{"title":"多元线性形式的Sárközy和Sós问题","authors":"Juanjo Rué , Christoph Spiegel","doi":"10.1016/j.endm.2018.06.018","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that for pairwise co-prime numbers <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>≥</mo><mn>2</mn></math></span> there does not exist any infinite set of positive integers <span><math><mi>A</mi></math></span> such that the representation function <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>#</mi><mo>{</mo><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><mi>n</mi><mo>}</mo></math></span> becomes constant for <em>n</em> large enough. This result is a particular case of our main theorem, which poses a further step towards answering a question of Sárközy and Sós and widely extends a previous result of Cilleruelo and Rué for bivariate linear forms (Bull. of the London Math. Society 2009).</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.018","citationCount":"5","resultStr":"{\"title\":\"On a problem of Sárközy and Sós for multivariate linear forms\",\"authors\":\"Juanjo Rué , Christoph Spiegel\",\"doi\":\"10.1016/j.endm.2018.06.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that for pairwise co-prime numbers <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>≥</mo><mn>2</mn></math></span> there does not exist any infinite set of positive integers <span><math><mi>A</mi></math></span> such that the representation function <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>A</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mi>#</mi><mo>{</mo><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><msup><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>:</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msub><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><mi>n</mi><mo>}</mo></math></span> becomes constant for <em>n</em> large enough. This result is a particular case of our main theorem, which poses a further step towards answering a question of Sárközy and Sós and widely extends a previous result of Cilleruelo and Rué for bivariate linear forms (Bull. of the London Math. Society 2009).</p></div>\",\"PeriodicalId\":35408,\"journal\":{\"name\":\"Electronic Notes in Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.018\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571065318301094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065318301094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
On a problem of Sárközy and Sós for multivariate linear forms
We prove that for pairwise co-prime numbers there does not exist any infinite set of positive integers such that the representation function becomes constant for n large enough. This result is a particular case of our main theorem, which poses a further step towards answering a question of Sárközy and Sós and widely extends a previous result of Cilleruelo and Rué for bivariate linear forms (Bull. of the London Math. Society 2009).
期刊介绍:
Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.