{"title":"具有物理层损伤约束的光传输网络中的功率感知路由","authors":"Y. B. Bekele, Y. Negash","doi":"10.1109/africon51333.2021.9570896","DOIUrl":null,"url":null,"abstract":"Due to the growth in data traffic volume and diversification of applications that use telecom network infrastructure, more power consuming telecommunication network equipments have been deployed. This scenario has led to an increase in the power consumption of the sector. In order to overcome this problem, stakeholders are striving to come up with ways to minimize this power consumption. In this work, a sleep mode operational strategy which takes the Physical Layer Impairment (PLI) and power loss/attenuation is proposed and an Integer Linear Programming (ILP) formulation is given. An implementation of the approach is carried out using GLPK optimizer and TOTEM toolbox simulation environments and results analyzed taking two Ethio Telecom backbone Optical Transport Network (OTN) segments. These optimizations & simulations help to analyze the impacts on Quality of Service (QoS) of applying this approach in addition to its main goal of power consumption minimization. Results show that a power saving of upto 51% for Addis Ababa backbone OTN and 44% for North-East backbone OTN can be achieved at maximum link utilization thresholds of 70% and 50% respectively. Link utilization constraint is used to ensure network QoS is maintained.","PeriodicalId":170342,"journal":{"name":"2021 IEEE AFRICON","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power-Aware Routing in Optical Transport Networks With Physical Layer Impairment Constraints\",\"authors\":\"Y. B. Bekele, Y. Negash\",\"doi\":\"10.1109/africon51333.2021.9570896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the growth in data traffic volume and diversification of applications that use telecom network infrastructure, more power consuming telecommunication network equipments have been deployed. This scenario has led to an increase in the power consumption of the sector. In order to overcome this problem, stakeholders are striving to come up with ways to minimize this power consumption. In this work, a sleep mode operational strategy which takes the Physical Layer Impairment (PLI) and power loss/attenuation is proposed and an Integer Linear Programming (ILP) formulation is given. An implementation of the approach is carried out using GLPK optimizer and TOTEM toolbox simulation environments and results analyzed taking two Ethio Telecom backbone Optical Transport Network (OTN) segments. These optimizations & simulations help to analyze the impacts on Quality of Service (QoS) of applying this approach in addition to its main goal of power consumption minimization. Results show that a power saving of upto 51% for Addis Ababa backbone OTN and 44% for North-East backbone OTN can be achieved at maximum link utilization thresholds of 70% and 50% respectively. Link utilization constraint is used to ensure network QoS is maintained.\",\"PeriodicalId\":170342,\"journal\":{\"name\":\"2021 IEEE AFRICON\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE AFRICON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/africon51333.2021.9570896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE AFRICON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/africon51333.2021.9570896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power-Aware Routing in Optical Transport Networks With Physical Layer Impairment Constraints
Due to the growth in data traffic volume and diversification of applications that use telecom network infrastructure, more power consuming telecommunication network equipments have been deployed. This scenario has led to an increase in the power consumption of the sector. In order to overcome this problem, stakeholders are striving to come up with ways to minimize this power consumption. In this work, a sleep mode operational strategy which takes the Physical Layer Impairment (PLI) and power loss/attenuation is proposed and an Integer Linear Programming (ILP) formulation is given. An implementation of the approach is carried out using GLPK optimizer and TOTEM toolbox simulation environments and results analyzed taking two Ethio Telecom backbone Optical Transport Network (OTN) segments. These optimizations & simulations help to analyze the impacts on Quality of Service (QoS) of applying this approach in addition to its main goal of power consumption minimization. Results show that a power saving of upto 51% for Addis Ababa backbone OTN and 44% for North-East backbone OTN can be achieved at maximum link utilization thresholds of 70% and 50% respectively. Link utilization constraint is used to ensure network QoS is maintained.