基于层次支持向量机分类器和高效特征的数字信号类型识别

A. Ebrahimzadeh, S. Seyedin
{"title":"基于层次支持向量机分类器和高效特征的数字信号类型识别","authors":"A. Ebrahimzadeh, S. Seyedin","doi":"10.1109/ICCTA.2007.50","DOIUrl":null,"url":null,"abstract":"Automatic digital signal type identification (ADSTI) is an important topic for both military and civilian communication applications. Most of proposed techniques (identifiers) can only recognize a few types of digital signal and usually need high levels of SNR. This paper presents a technique that includes a variety of digital signal types. In this technique a hierarchical support vector machine based structure is proposed for multi-class classification. Combination of higher order moments and higher order cumulants up to eighth are utilized as the effective features. Genetic algorithm is used to parameter selection in order to improve the performance of identifier. Simulation results show that proposed identifier has high performance even at low SNR values","PeriodicalId":308247,"journal":{"name":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Digital Signal Types Identification Using a Hierarchical SVM-Based Classifier and Efficient Features\",\"authors\":\"A. Ebrahimzadeh, S. Seyedin\",\"doi\":\"10.1109/ICCTA.2007.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic digital signal type identification (ADSTI) is an important topic for both military and civilian communication applications. Most of proposed techniques (identifiers) can only recognize a few types of digital signal and usually need high levels of SNR. This paper presents a technique that includes a variety of digital signal types. In this technique a hierarchical support vector machine based structure is proposed for multi-class classification. Combination of higher order moments and higher order cumulants up to eighth are utilized as the effective features. Genetic algorithm is used to parameter selection in order to improve the performance of identifier. Simulation results show that proposed identifier has high performance even at low SNR values\",\"PeriodicalId\":308247,\"journal\":{\"name\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCTA.2007.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA.2007.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

自动数字信号类型识别(ADSTI)是军用和民用通信领域的一个重要课题。大多数提出的技术(标识符)只能识别几种类型的数字信号,通常需要高水平的信噪比。本文提出了一种包含多种数字信号类型的技术。在该技术中,提出了一种基于分层支持向量机的多类分类结构。利用高阶矩和高阶累积量的组合作为有效特征。为了提高标识符的性能,采用遗传算法进行参数选择。仿真结果表明,该识别器在低信噪比条件下仍具有良好的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital Signal Types Identification Using a Hierarchical SVM-Based Classifier and Efficient Features
Automatic digital signal type identification (ADSTI) is an important topic for both military and civilian communication applications. Most of proposed techniques (identifiers) can only recognize a few types of digital signal and usually need high levels of SNR. This paper presents a technique that includes a variety of digital signal types. In this technique a hierarchical support vector machine based structure is proposed for multi-class classification. Combination of higher order moments and higher order cumulants up to eighth are utilized as the effective features. Genetic algorithm is used to parameter selection in order to improve the performance of identifier. Simulation results show that proposed identifier has high performance even at low SNR values
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信