氧化Ti3AlC2纳米层的力学特性及高温稳定性

T. Prikhna, O. Ostash, T. Basyuk, A. Ivasyshin, V. Podhurska, M. Loshak, T. Cabioc’h, P. Chartier, V. Sverdun, V. Moshchil, S. Dub, M. Karpets, A. Starostina, A. Kozyrev
{"title":"氧化Ti3AlC2纳米层的力学特性及高温稳定性","authors":"T. Prikhna, O. Ostash, T. Basyuk, A. Ivasyshin, V. Podhurska, M. Loshak, T. Cabioc’h, P. Chartier, V. Sverdun, V. Moshchil, S. Dub, M. Karpets, A. Starostina, A. Kozyrev","doi":"10.1109/OMEE.2014.6912349","DOIUrl":null,"url":null,"abstract":"The oxide film formed on the surface of the highly dense (ρ=4.27 g/cm<sup>3</sup>, porosity 1 %) material based on nanolaminated MAX phase Ti<sub>3</sub>AlC<sub>2</sub> (89 % Ti<sub>3</sub>AlC<sub>2</sub>, 6 % TiC, 5 % Al<sub>2</sub>O<sub>3</sub>) manufactured by hot pressing (at 30 MPa) made the material highly resistant in air at high temperatures: after 1000 hours of exposition at 600 °C it demonstrated a higher resistance to oxidation than chromium ferrite steels (Crofer GPU and JDA types). Due to the surface oxidation self-healing of defects took place. Besides, the Ti<sub>3</sub>AlC<sub>2</sub> material demonstrated resistance against high-temperature creep and after being kept in H<sub>2</sub> at 600 °C for 3h its bending strength reduced by 5 % only. At room temperature the Ti<sub>3</sub>AlC<sub>2</sub> bulk exhibited microhardness Hμ = 4.6 GPa (at 5 N), hardness HV<sub>50</sub> = 630 (at 50 N ) and HRA = 70 (at 600 N), Young modulus was 140 ± 29 GPa, bending strength =500 MPa, compression strength 700 MPa, and fracture toughness K<sub>1C</sub>=10.2 MPa·m<sup>0.5</sup>.","PeriodicalId":142377,"journal":{"name":"International Conference on Oxide Materials for Electronic Engineering - fabrication, properties and applications (OMEE-2014)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical characteristics and high temperature stability of oxidized Ti3AlC2 nanolaminat\",\"authors\":\"T. Prikhna, O. Ostash, T. Basyuk, A. Ivasyshin, V. Podhurska, M. Loshak, T. Cabioc’h, P. Chartier, V. Sverdun, V. Moshchil, S. Dub, M. Karpets, A. Starostina, A. Kozyrev\",\"doi\":\"10.1109/OMEE.2014.6912349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The oxide film formed on the surface of the highly dense (ρ=4.27 g/cm<sup>3</sup>, porosity 1 %) material based on nanolaminated MAX phase Ti<sub>3</sub>AlC<sub>2</sub> (89 % Ti<sub>3</sub>AlC<sub>2</sub>, 6 % TiC, 5 % Al<sub>2</sub>O<sub>3</sub>) manufactured by hot pressing (at 30 MPa) made the material highly resistant in air at high temperatures: after 1000 hours of exposition at 600 °C it demonstrated a higher resistance to oxidation than chromium ferrite steels (Crofer GPU and JDA types). Due to the surface oxidation self-healing of defects took place. Besides, the Ti<sub>3</sub>AlC<sub>2</sub> material demonstrated resistance against high-temperature creep and after being kept in H<sub>2</sub> at 600 °C for 3h its bending strength reduced by 5 % only. At room temperature the Ti<sub>3</sub>AlC<sub>2</sub> bulk exhibited microhardness Hμ = 4.6 GPa (at 5 N), hardness HV<sub>50</sub> = 630 (at 50 N ) and HRA = 70 (at 600 N), Young modulus was 140 ± 29 GPa, bending strength =500 MPa, compression strength 700 MPa, and fracture toughness K<sub>1C</sub>=10.2 MPa·m<sup>0.5</sup>.\",\"PeriodicalId\":142377,\"journal\":{\"name\":\"International Conference on Oxide Materials for Electronic Engineering - fabrication, properties and applications (OMEE-2014)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Oxide Materials for Electronic Engineering - fabrication, properties and applications (OMEE-2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OMEE.2014.6912349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Oxide Materials for Electronic Engineering - fabrication, properties and applications (OMEE-2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMEE.2014.6912349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过热压(30 MPa)制备的基于纳米层化MAX相Ti3AlC2 (89% Ti3AlC2, 6% TiC, 5% Al2O3)的高密度(ρ=4.27 g/cm3,孔隙率1%)材料表面形成的氧化膜使该材料在高温空气中具有很高的抗氧化性:在600℃下暴露1000小时后,它表现出比铬铁素体钢(Crofer GPU和JDA类型)更高的抗氧化性。由于表面氧化,缺陷发生自愈。此外,Ti3AlC2材料具有抗高温蠕变性能,在600℃的H2中保存3h后,其抗弯强度仅下降5%。室温下,Ti3AlC2体的显微硬度Hμ = 4.6 GPa (5 N),硬度HV50 = 630 (50 N), HRA = 70 (600 N),杨氏模量140±29 GPa,抗弯强度为500 MPa,抗压强度为700 MPa,断裂韧性K1C=10.2 MPa·m0.5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical characteristics and high temperature stability of oxidized Ti3AlC2 nanolaminat
The oxide film formed on the surface of the highly dense (ρ=4.27 g/cm3, porosity 1 %) material based on nanolaminated MAX phase Ti3AlC2 (89 % Ti3AlC2, 6 % TiC, 5 % Al2O3) manufactured by hot pressing (at 30 MPa) made the material highly resistant in air at high temperatures: after 1000 hours of exposition at 600 °C it demonstrated a higher resistance to oxidation than chromium ferrite steels (Crofer GPU and JDA types). Due to the surface oxidation self-healing of defects took place. Besides, the Ti3AlC2 material demonstrated resistance against high-temperature creep and after being kept in H2 at 600 °C for 3h its bending strength reduced by 5 % only. At room temperature the Ti3AlC2 bulk exhibited microhardness Hμ = 4.6 GPa (at 5 N), hardness HV50 = 630 (at 50 N ) and HRA = 70 (at 600 N), Young modulus was 140 ± 29 GPa, bending strength =500 MPa, compression strength 700 MPa, and fracture toughness K1C=10.2 MPa·m0.5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信