单连续变量双目标0-1线性背包问题的精确算法

Hongtao Liu
{"title":"单连续变量双目标0-1线性背包问题的精确算法","authors":"Hongtao Liu","doi":"10.1109/PDCAT.2017.00022","DOIUrl":null,"url":null,"abstract":"In this paper, we study one variant of the multiobjective knapsack problem, i.e., the biobjective 0-1 linear knapsack problem with a single continuous variable (BKPC). An exact algorithm, the biobjective branch and bound method (BOBB), is presented to find all nondominated points of the BKPC. We analyze the nondominated frontier of the BKPC and design a new branching strategy to improve the algorithm. Finally an illustrative example shows how the algorithm solves a practical problem.","PeriodicalId":119197,"journal":{"name":"2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Exact Algorithm for the Biobjective 0-1 Linear Knapsack Problem with a Single Continuous Variable\",\"authors\":\"Hongtao Liu\",\"doi\":\"10.1109/PDCAT.2017.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study one variant of the multiobjective knapsack problem, i.e., the biobjective 0-1 linear knapsack problem with a single continuous variable (BKPC). An exact algorithm, the biobjective branch and bound method (BOBB), is presented to find all nondominated points of the BKPC. We analyze the nondominated frontier of the BKPC and design a new branching strategy to improve the algorithm. Finally an illustrative example shows how the algorithm solves a practical problem.\",\"PeriodicalId\":119197,\"journal\":{\"name\":\"2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2017.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2017.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了多目标背包问题的一种变体,即具有单连续变量的双目标0-1线性背包问题。提出了一种精确的算法——双目标分支定界法(BOBB)来求出BKPC的所有非支配点。我们分析了BKPC的非支配边界,并设计了一种新的分支策略来改进算法。最后,通过实例说明了该算法是如何解决实际问题的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Exact Algorithm for the Biobjective 0-1 Linear Knapsack Problem with a Single Continuous Variable
In this paper, we study one variant of the multiobjective knapsack problem, i.e., the biobjective 0-1 linear knapsack problem with a single continuous variable (BKPC). An exact algorithm, the biobjective branch and bound method (BOBB), is presented to find all nondominated points of the BKPC. We analyze the nondominated frontier of the BKPC and design a new branching strategy to improve the algorithm. Finally an illustrative example shows how the algorithm solves a practical problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信