Shunmuga Velayutham C., Sujit Subramanian S, A. K, M. Sathya, Nathiyaa Sengodan, Divesh Kosuri, Sai Satvik Arvapalli, Thangavelu S, J. G
{"title":"EvoPrunerPool:一个使用修剪池来压缩卷积神经网络的进化修剪器","authors":"Shunmuga Velayutham C., Sujit Subramanian S, A. K, M. Sathya, Nathiyaa Sengodan, Divesh Kosuri, Sai Satvik Arvapalli, Thangavelu S, J. G","doi":"10.1145/3583133.3596333","DOIUrl":null,"url":null,"abstract":"This paper proposes EvoPrunerPool - an Evolutionary Pruner using Pruner Pool for Compressing Convolutional Neural Networks. EvoPrunerPool formulates filter pruning as a search problem for identifying the right set of pruners from a pool of off-the-shelf filter pruners and applying them in appropriate sequence to incrementally sparsify a given Convolutional Neural Network. The efficacy of EvoPrunerPool has been demonstrated on LeNet model using MNIST data as well as on VGG-19 deep model using CIFAR-10 data and its performance has been benchmarked against state-of-the-art model compression approaches. Experiments demonstrate a very competitive and effective performance of the proposed Evolutionary Pruner. Since EvoPrunerPool employs the native representation of a popular machine learning framework and filter pruners from a well-known AutoML toolkit the proposed approach is both extensible and generic. Consequently, a typical practitioner can use EvoPrunerPool without any in-depth understanding of filter pruning in specific and model compression in general.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EvoPrunerPool: An Evolutionary Pruner using Pruner Pool for Compressing Convolutional Neural Networks\",\"authors\":\"Shunmuga Velayutham C., Sujit Subramanian S, A. K, M. Sathya, Nathiyaa Sengodan, Divesh Kosuri, Sai Satvik Arvapalli, Thangavelu S, J. G\",\"doi\":\"10.1145/3583133.3596333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes EvoPrunerPool - an Evolutionary Pruner using Pruner Pool for Compressing Convolutional Neural Networks. EvoPrunerPool formulates filter pruning as a search problem for identifying the right set of pruners from a pool of off-the-shelf filter pruners and applying them in appropriate sequence to incrementally sparsify a given Convolutional Neural Network. The efficacy of EvoPrunerPool has been demonstrated on LeNet model using MNIST data as well as on VGG-19 deep model using CIFAR-10 data and its performance has been benchmarked against state-of-the-art model compression approaches. Experiments demonstrate a very competitive and effective performance of the proposed Evolutionary Pruner. Since EvoPrunerPool employs the native representation of a popular machine learning framework and filter pruners from a well-known AutoML toolkit the proposed approach is both extensible and generic. Consequently, a typical practitioner can use EvoPrunerPool without any in-depth understanding of filter pruning in specific and model compression in general.\",\"PeriodicalId\":422029,\"journal\":{\"name\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3583133.3596333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3596333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EvoPrunerPool: An Evolutionary Pruner using Pruner Pool for Compressing Convolutional Neural Networks
This paper proposes EvoPrunerPool - an Evolutionary Pruner using Pruner Pool for Compressing Convolutional Neural Networks. EvoPrunerPool formulates filter pruning as a search problem for identifying the right set of pruners from a pool of off-the-shelf filter pruners and applying them in appropriate sequence to incrementally sparsify a given Convolutional Neural Network. The efficacy of EvoPrunerPool has been demonstrated on LeNet model using MNIST data as well as on VGG-19 deep model using CIFAR-10 data and its performance has been benchmarked against state-of-the-art model compression approaches. Experiments demonstrate a very competitive and effective performance of the proposed Evolutionary Pruner. Since EvoPrunerPool employs the native representation of a popular machine learning framework and filter pruners from a well-known AutoML toolkit the proposed approach is both extensible and generic. Consequently, a typical practitioner can use EvoPrunerPool without any in-depth understanding of filter pruning in specific and model compression in general.