U-Net和掩模R-CNN用于合成液体喷雾分割的实验分析

Refat Khan Pathan, Wei Lun Lim, Sian Lun Lau, C. Ho, P. Khare, R. Koneru
{"title":"U-Net和掩模R-CNN用于合成液体喷雾分割的实验分析","authors":"Refat Khan Pathan, Wei Lun Lim, Sian Lun Lau, C. Ho, P. Khare, R. Koneru","doi":"10.1109/ICOCO56118.2022.10031951","DOIUrl":null,"url":null,"abstract":"In digital image processing, segmentation is a process by which we can partition an image based on some variables to extract necessary elements. Unlike typical objects, it is complicated to segment dynamic objects from a synthetic fluid dataset where properties like position and shape change over time. Experiments on image segmentation over this dataset are conducted using U-Net (semantic segmentation) and Mask R-CNN (instance segmentation) to compare their results. The training dataset is generated from seven labelled images through data augmentation. Training on 1000 and validating on 200 images, Mask R-CNN achieved more epochs quickly. Around 1000 epochs for Mask R-CNN and 500 epochs for U-Net, both models reached a similar result in terms of F1 score and can segment the object in the new images.","PeriodicalId":319652,"journal":{"name":"2022 IEEE International Conference on Computing (ICOCO)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental Analysis of U-Net and Mask R-CNN for Segmentation of Synthetic Liquid Spray\",\"authors\":\"Refat Khan Pathan, Wei Lun Lim, Sian Lun Lau, C. Ho, P. Khare, R. Koneru\",\"doi\":\"10.1109/ICOCO56118.2022.10031951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In digital image processing, segmentation is a process by which we can partition an image based on some variables to extract necessary elements. Unlike typical objects, it is complicated to segment dynamic objects from a synthetic fluid dataset where properties like position and shape change over time. Experiments on image segmentation over this dataset are conducted using U-Net (semantic segmentation) and Mask R-CNN (instance segmentation) to compare their results. The training dataset is generated from seven labelled images through data augmentation. Training on 1000 and validating on 200 images, Mask R-CNN achieved more epochs quickly. Around 1000 epochs for Mask R-CNN and 500 epochs for U-Net, both models reached a similar result in terms of F1 score and can segment the object in the new images.\",\"PeriodicalId\":319652,\"journal\":{\"name\":\"2022 IEEE International Conference on Computing (ICOCO)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Computing (ICOCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOCO56118.2022.10031951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Computing (ICOCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOCO56118.2022.10031951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在数字图像处理中,分割是一种基于某些变量对图像进行分割以提取必要元素的过程。与典型对象不同,从位置和形状等属性随时间变化的合成流体数据集中分割动态对象是复杂的。在该数据集上使用U-Net(语义分割)和Mask R-CNN(实例分割)进行图像分割实验,比较其结果。训练数据集是通过数据增强从7个标记图像中生成的。在1000个图像上训练,在200个图像上验证,Mask R-CNN快速实现了更多的时代。Mask R-CNN在1000次epoch左右,U-Net在500次epoch左右,两种模型在F1得分方面达到了相似的结果,可以在新图像中分割出目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Analysis of U-Net and Mask R-CNN for Segmentation of Synthetic Liquid Spray
In digital image processing, segmentation is a process by which we can partition an image based on some variables to extract necessary elements. Unlike typical objects, it is complicated to segment dynamic objects from a synthetic fluid dataset where properties like position and shape change over time. Experiments on image segmentation over this dataset are conducted using U-Net (semantic segmentation) and Mask R-CNN (instance segmentation) to compare their results. The training dataset is generated from seven labelled images through data augmentation. Training on 1000 and validating on 200 images, Mask R-CNN achieved more epochs quickly. Around 1000 epochs for Mask R-CNN and 500 epochs for U-Net, both models reached a similar result in terms of F1 score and can segment the object in the new images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信