利用连续共振中的磁偶极子准束缚态控制石墨烯临界耦合的光吸收

Xing Wang, J. Duan, Wenya Chen, Chaobiao Zhou, Tingting Liu, Shuyuan Xiao
{"title":"利用连续共振中的磁偶极子准束缚态控制石墨烯临界耦合的光吸收","authors":"Xing Wang, J. Duan, Wenya Chen, Chaobiao Zhou, Tingting Liu, Shuyuan Xiao","doi":"10.1103/physrevb.102.155432","DOIUrl":null,"url":null,"abstract":"Enhancing the light-matter interaction in two-dimensional (2D) materials with high-$Q$ resonances in photonic structures has boosted the development of optical and photonic devices. Herein, we intend to build a bridge between the radiation engineering and the bound states in the continuum (BIC), and present a general method to control light absorption at critical coupling through the quasi-BIC resonance. In a single-mode two-port system composed of graphene coupled with silicon nanodisk metasurfaces, the maximum absorption of 0.5 can be achieved when the radiation rate of the magnetic dipole resonance equals to the dissipate loss rate of graphene. Furthermore, the absorption bandwidth can be adjusted more than two orders of magnitude from 0.9 nm to 94 nm by simultaneously changing the asymmetric parameter of metasurfaces, the Fermi level and the layer number of graphene. This work reveals out the essential role of BIC in radiation engineering and provides promising strategies in controlling light absorption of 2D materials for the next-generation optical and photonic devices, e.g., light emitters, detectors, modulators, and sensors.","PeriodicalId":304443,"journal":{"name":"arXiv: Optics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Controlling light absorption of graphene at critical coupling through magnetic dipole quasi-bound states in the continuum resonance\",\"authors\":\"Xing Wang, J. Duan, Wenya Chen, Chaobiao Zhou, Tingting Liu, Shuyuan Xiao\",\"doi\":\"10.1103/physrevb.102.155432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enhancing the light-matter interaction in two-dimensional (2D) materials with high-$Q$ resonances in photonic structures has boosted the development of optical and photonic devices. Herein, we intend to build a bridge between the radiation engineering and the bound states in the continuum (BIC), and present a general method to control light absorption at critical coupling through the quasi-BIC resonance. In a single-mode two-port system composed of graphene coupled with silicon nanodisk metasurfaces, the maximum absorption of 0.5 can be achieved when the radiation rate of the magnetic dipole resonance equals to the dissipate loss rate of graphene. Furthermore, the absorption bandwidth can be adjusted more than two orders of magnitude from 0.9 nm to 94 nm by simultaneously changing the asymmetric parameter of metasurfaces, the Fermi level and the layer number of graphene. This work reveals out the essential role of BIC in radiation engineering and provides promising strategies in controlling light absorption of 2D materials for the next-generation optical and photonic devices, e.g., light emitters, detectors, modulators, and sensors.\",\"PeriodicalId\":304443,\"journal\":{\"name\":\"arXiv: Optics\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.102.155432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.155432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

在光子结构中增强具有高Q共振的二维材料中的光-物质相互作用,促进了光学和光子器件的发展。在此,我们打算在辐射工程和连续体束缚态(BIC)之间架起一座桥梁,提出一种通过准BIC共振控制临界耦合光吸收的通用方法。在石墨烯与硅纳米盘超表面耦合的单模双端口系统中,当磁偶极子共振的辐射速率等于石墨烯的耗散损失率时,可以实现0.5的最大吸收。此外,通过同时改变超表面的不对称参数、费米能级和石墨烯的层数,可以将吸收带宽从0.9 nm调整到94 nm,幅度超过两个数量级。这项工作揭示了BIC在辐射工程中的重要作用,并为下一代光学和光子器件(如光发射器、探测器、调制器和传感器)控制二维材料的光吸收提供了有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlling light absorption of graphene at critical coupling through magnetic dipole quasi-bound states in the continuum resonance
Enhancing the light-matter interaction in two-dimensional (2D) materials with high-$Q$ resonances in photonic structures has boosted the development of optical and photonic devices. Herein, we intend to build a bridge between the radiation engineering and the bound states in the continuum (BIC), and present a general method to control light absorption at critical coupling through the quasi-BIC resonance. In a single-mode two-port system composed of graphene coupled with silicon nanodisk metasurfaces, the maximum absorption of 0.5 can be achieved when the radiation rate of the magnetic dipole resonance equals to the dissipate loss rate of graphene. Furthermore, the absorption bandwidth can be adjusted more than two orders of magnitude from 0.9 nm to 94 nm by simultaneously changing the asymmetric parameter of metasurfaces, the Fermi level and the layer number of graphene. This work reveals out the essential role of BIC in radiation engineering and provides promising strategies in controlling light absorption of 2D materials for the next-generation optical and photonic devices, e.g., light emitters, detectors, modulators, and sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信