基于随机公式的步行分析

A. Coja-Oghlan, A. Frieze
{"title":"基于随机公式的步行分析","authors":"A. Coja-Oghlan, A. Frieze","doi":"10.1137/12090191X","DOIUrl":null,"url":null,"abstract":"Let Φ be a uniformly distributed random k-SAT formula with n variables and m clauses. We prove that the Walksat algorithm from Papadimitriou (FOCS 1991)/Schoning (FOCS 1999) finds a satisfying assignment of Φ in polynomial time w.h.p. if m/n ≤ ρ · 2k/k for a certain constant ρ > 0. This is an improvement by a factor of Θ(k) over the best previous analysis of Walksat from Coja-Oghlan, Feige, Frieze, Krivelevich, Vilenchik (SODA 2009).","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Analyzing Walksat on Random Formulas\",\"authors\":\"A. Coja-Oghlan, A. Frieze\",\"doi\":\"10.1137/12090191X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Φ be a uniformly distributed random k-SAT formula with n variables and m clauses. We prove that the Walksat algorithm from Papadimitriou (FOCS 1991)/Schoning (FOCS 1999) finds a satisfying assignment of Φ in polynomial time w.h.p. if m/n ≤ ρ · 2k/k for a certain constant ρ > 0. This is an improvement by a factor of Θ(k) over the best previous analysis of Walksat from Coja-Oghlan, Feige, Frieze, Krivelevich, Vilenchik (SODA 2009).\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/12090191X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/12090191X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

设Φ为n变量m子句的均匀分布随机k-SAT公式。我们证明了Papadimitriou (FOCS 1991)/Schoning (FOCS 1999)的Walksat算法在多项式时间w.h.p.下,当某常数ρ > 0时,m/n≤ρ·2k/k能得到一个令人满意的Φ分配。这比之前Coja-Oghlan, Feige, Frieze, Krivelevich, Vilenchik (SODA 2009)对Walksat的最佳分析提高了Θ(k)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing Walksat on Random Formulas
Let Φ be a uniformly distributed random k-SAT formula with n variables and m clauses. We prove that the Walksat algorithm from Papadimitriou (FOCS 1991)/Schoning (FOCS 1999) finds a satisfying assignment of Φ in polynomial time w.h.p. if m/n ≤ ρ · 2k/k for a certain constant ρ > 0. This is an improvement by a factor of Θ(k) over the best previous analysis of Walksat from Coja-Oghlan, Feige, Frieze, Krivelevich, Vilenchik (SODA 2009).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信