保护隐私数据分类的非线性降维方法

Khaled F. Alotaibi, V. J. Rayward-Smith, Wenjia Wang, B. Iglesia
{"title":"保护隐私数据分类的非线性降维方法","authors":"Khaled F. Alotaibi, V. J. Rayward-Smith, Wenjia Wang, B. Iglesia","doi":"10.1109/SocialCom-PASSAT.2012.76","DOIUrl":null,"url":null,"abstract":"Many techniques have been proposed to protect the privacy of data outsourced for analysis by external parties. However, most of these techniques distort the underlying data properties, and therefore, hinder data mining algorithms from discovering patterns. The aim of Privacy-Preserving Data Mining (PPDM) is to generate a data-friendly transformation that maintains both the privacy and the utility of the data. We have proposed a novel privacy-preserving framework based on non-linear dimensionality reduction (i.e. non-metric multidimensional scaling) to perturb the original data. The perturbed data exhibited good utility in terms of distance-preservation between objects. This was tested on a clustering task with good results. In this paper, we test our novel PPDM approach on a classification task using a k-Nearest Neighbour (k-NN) classification algorithm. We compare the classification results obtained from both the original and the perturbed data and find them to be much same particularly for the few lower dimensions. We show that, for distance-based classification, our approach preserves the utility of the data while hiding the private details.","PeriodicalId":129526,"journal":{"name":"2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Non-linear Dimensionality Reduction for Privacy-Preserving Data Classification\",\"authors\":\"Khaled F. Alotaibi, V. J. Rayward-Smith, Wenjia Wang, B. Iglesia\",\"doi\":\"10.1109/SocialCom-PASSAT.2012.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many techniques have been proposed to protect the privacy of data outsourced for analysis by external parties. However, most of these techniques distort the underlying data properties, and therefore, hinder data mining algorithms from discovering patterns. The aim of Privacy-Preserving Data Mining (PPDM) is to generate a data-friendly transformation that maintains both the privacy and the utility of the data. We have proposed a novel privacy-preserving framework based on non-linear dimensionality reduction (i.e. non-metric multidimensional scaling) to perturb the original data. The perturbed data exhibited good utility in terms of distance-preservation between objects. This was tested on a clustering task with good results. In this paper, we test our novel PPDM approach on a classification task using a k-Nearest Neighbour (k-NN) classification algorithm. We compare the classification results obtained from both the original and the perturbed data and find them to be much same particularly for the few lower dimensions. We show that, for distance-based classification, our approach preserves the utility of the data while hiding the private details.\",\"PeriodicalId\":129526,\"journal\":{\"name\":\"2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SocialCom-PASSAT.2012.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialCom-PASSAT.2012.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

已经提出了许多技术来保护外包给外部方分析的数据的隐私。然而,这些技术中的大多数都扭曲了底层数据属性,因此阻碍了数据挖掘算法发现模式。隐私保护数据挖掘(PPDM)的目的是生成数据友好型转换,该转换既保持数据的隐私性,又保持数据的实用性。我们提出了一种新的基于非线性降维(即非度量多维尺度)的隐私保护框架来扰动原始数据。扰动后的数据在物体之间的距离保持方面表现出良好的效用。在一个聚类任务上进行了测试,结果很好。在本文中,我们使用k-最近邻(k-NN)分类算法在分类任务上测试了我们的新PPDM方法。我们比较了从原始数据和扰动数据中得到的分类结果,发现它们非常相似,特别是对于少数低维。我们表明,对于基于距离的分类,我们的方法保留了数据的实用性,同时隐藏了私有细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-linear Dimensionality Reduction for Privacy-Preserving Data Classification
Many techniques have been proposed to protect the privacy of data outsourced for analysis by external parties. However, most of these techniques distort the underlying data properties, and therefore, hinder data mining algorithms from discovering patterns. The aim of Privacy-Preserving Data Mining (PPDM) is to generate a data-friendly transformation that maintains both the privacy and the utility of the data. We have proposed a novel privacy-preserving framework based on non-linear dimensionality reduction (i.e. non-metric multidimensional scaling) to perturb the original data. The perturbed data exhibited good utility in terms of distance-preservation between objects. This was tested on a clustering task with good results. In this paper, we test our novel PPDM approach on a classification task using a k-Nearest Neighbour (k-NN) classification algorithm. We compare the classification results obtained from both the original and the perturbed data and find them to be much same particularly for the few lower dimensions. We show that, for distance-based classification, our approach preserves the utility of the data while hiding the private details.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信