地球物理盆地建模中不确定性量化的贝叶斯方法

A. Pradhan, T. Mukerji
{"title":"地球物理盆地建模中不确定性量化的贝叶斯方法","authors":"A. Pradhan, T. Mukerji","doi":"10.3997/2214-4609.201902187","DOIUrl":null,"url":null,"abstract":"Summary Geophysical basin modeling helps constrain the non-uniqueness of seismic velocity inversion methods by employing basin modeling to incorporate geo-history constraints into inversion. Traditionally, basin modeling is performed in a deterministic manner and thus does not facilitate uncertainty quantification. We present a Bayesian approach for propagation of basin modeling uncertainties into velocity models. Our methodology constitutes defining prior probability distributions on uncertain basin modeling parameters and likelihood models on basin modeling calibration data. Posterior realizations of basin models are generated by sampling the prior, performing Monte-Carlo basin simulations and evaluating the corresponding likelihood values. These posterior models are finally linked to velocity models by rock physics modeling. We demonstrate the applicability of our proposed workflow using a 2D real case study from Gulf of Mexico.","PeriodicalId":186806,"journal":{"name":"Petroleum Geostatistics 2019","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian Approach to Uncertainty Quantification in Geophysical Basin Modeling\",\"authors\":\"A. Pradhan, T. Mukerji\",\"doi\":\"10.3997/2214-4609.201902187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Geophysical basin modeling helps constrain the non-uniqueness of seismic velocity inversion methods by employing basin modeling to incorporate geo-history constraints into inversion. Traditionally, basin modeling is performed in a deterministic manner and thus does not facilitate uncertainty quantification. We present a Bayesian approach for propagation of basin modeling uncertainties into velocity models. Our methodology constitutes defining prior probability distributions on uncertain basin modeling parameters and likelihood models on basin modeling calibration data. Posterior realizations of basin models are generated by sampling the prior, performing Monte-Carlo basin simulations and evaluating the corresponding likelihood values. These posterior models are finally linked to velocity models by rock physics modeling. We demonstrate the applicability of our proposed workflow using a 2D real case study from Gulf of Mexico.\",\"PeriodicalId\":186806,\"journal\":{\"name\":\"Petroleum Geostatistics 2019\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geostatistics 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201902187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geostatistics 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201902187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地球物理盆地模拟利用盆地模拟将地史约束条件整合到反演中,从而限制了地震速度反演方法的非唯一性。传统上,盆地建模是以确定性的方式进行的,因此不利于不确定性的量化。我们提出了一种贝叶斯方法来将盆地建模的不确定性传播到速度模型中。我们的方法包括定义不确定盆地建模参数的先验概率分布和盆地建模校准数据的似然模型。盆地模型的后验实现是通过采样先验、进行蒙特卡罗盆地模拟和评估相应的似然值来产生的。这些后验模型最终通过岩石物理建模与速度模型联系起来。我们使用来自墨西哥湾的2D真实案例研究来演示我们提出的工作流的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian Approach to Uncertainty Quantification in Geophysical Basin Modeling
Summary Geophysical basin modeling helps constrain the non-uniqueness of seismic velocity inversion methods by employing basin modeling to incorporate geo-history constraints into inversion. Traditionally, basin modeling is performed in a deterministic manner and thus does not facilitate uncertainty quantification. We present a Bayesian approach for propagation of basin modeling uncertainties into velocity models. Our methodology constitutes defining prior probability distributions on uncertain basin modeling parameters and likelihood models on basin modeling calibration data. Posterior realizations of basin models are generated by sampling the prior, performing Monte-Carlo basin simulations and evaluating the corresponding likelihood values. These posterior models are finally linked to velocity models by rock physics modeling. We demonstrate the applicability of our proposed workflow using a 2D real case study from Gulf of Mexico.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信