{"title":"美国宇航局格伦研究中心放射性同位素动力系统的动态功率转换器开发","authors":"S. Oriti, Scott D. Wilson","doi":"10.2514/6.2018-4498","DOIUrl":null,"url":null,"abstract":"The Thermal Energy Conversion Branch at NASA Glenn Research Center (GRC) is supporting the development of high-efficiency power convertors for use in Radioisotope Power Systems (RPS). Significant progress was made towards such a system that utilized Stirling conversion during the 2001 to 2015 timeframe. Flight development of the Advanced Stirling Radioisotope Generator (ASRG) was cancelled in 2013 by the Department of Energy (DOE) and NASA Headquarters primarily due to budget constraints, and the Advanced Stirling Convertor (ASC) technology contract was subsequently concluded in 2015. A new chapter of technology development has recently been initiated by the NASA RPS Program. This effort is considering all dynamic power convertor options, such as Stirling and Brayton cycles. Four convertor development contracts supporting this effort were awarded in 2017. The awarded contracts include two free-piston Stirling, one thermoacoustic Stirling, and one turbo-Brayton designs. The technology development contracts each consist of up to three phases: Design, Fabricate, and Test. As of May 2018, all contracts have completed the Design Phase, and each underwent a design review with an independent review board. Three of the contracts are planned to execute the Phase 2 option for fabrication. Convertors manifesting from these development efforts will then undergo independent validation and verification at NASA facilities, which will consist of convertor performance and RPS viability demonstrations. Example tests include launch vibration simulation, performance mapping over the environmental temperature range, and static acceleration exposure. In parallel with this renewed development effort, NASA GRC is still demonstrating free-piston Stirling convertor technology using assets from previous projects. The Stirling Research Laboratory (SRL) is still operating several convertors from previous development projects which have similarities and relevance to current contract designs. Four of which are flexure-bearing based, and another six are gas-bearing based. One of the flexure-bearing convertors has accumulated over 110,000 hours of operation, and holds the current record for maintenance-free heat-engine run-time. Another flexure-bearing convertor was recently manually shutdown after 105,620 hours of operation, then disassembled","PeriodicalId":224217,"journal":{"name":"2018 International Energy Conversion Engineering Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Dynamic Power Convertor Development for Radioisotope Power Systems at NASA Glenn Research Center\",\"authors\":\"S. Oriti, Scott D. Wilson\",\"doi\":\"10.2514/6.2018-4498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Thermal Energy Conversion Branch at NASA Glenn Research Center (GRC) is supporting the development of high-efficiency power convertors for use in Radioisotope Power Systems (RPS). Significant progress was made towards such a system that utilized Stirling conversion during the 2001 to 2015 timeframe. Flight development of the Advanced Stirling Radioisotope Generator (ASRG) was cancelled in 2013 by the Department of Energy (DOE) and NASA Headquarters primarily due to budget constraints, and the Advanced Stirling Convertor (ASC) technology contract was subsequently concluded in 2015. A new chapter of technology development has recently been initiated by the NASA RPS Program. This effort is considering all dynamic power convertor options, such as Stirling and Brayton cycles. Four convertor development contracts supporting this effort were awarded in 2017. The awarded contracts include two free-piston Stirling, one thermoacoustic Stirling, and one turbo-Brayton designs. The technology development contracts each consist of up to three phases: Design, Fabricate, and Test. As of May 2018, all contracts have completed the Design Phase, and each underwent a design review with an independent review board. Three of the contracts are planned to execute the Phase 2 option for fabrication. Convertors manifesting from these development efforts will then undergo independent validation and verification at NASA facilities, which will consist of convertor performance and RPS viability demonstrations. Example tests include launch vibration simulation, performance mapping over the environmental temperature range, and static acceleration exposure. In parallel with this renewed development effort, NASA GRC is still demonstrating free-piston Stirling convertor technology using assets from previous projects. The Stirling Research Laboratory (SRL) is still operating several convertors from previous development projects which have similarities and relevance to current contract designs. Four of which are flexure-bearing based, and another six are gas-bearing based. One of the flexure-bearing convertors has accumulated over 110,000 hours of operation, and holds the current record for maintenance-free heat-engine run-time. Another flexure-bearing convertor was recently manually shutdown after 105,620 hours of operation, then disassembled\",\"PeriodicalId\":224217,\"journal\":{\"name\":\"2018 International Energy Conversion Engineering Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Energy Conversion Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/6.2018-4498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Energy Conversion Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2018-4498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Power Convertor Development for Radioisotope Power Systems at NASA Glenn Research Center
The Thermal Energy Conversion Branch at NASA Glenn Research Center (GRC) is supporting the development of high-efficiency power convertors for use in Radioisotope Power Systems (RPS). Significant progress was made towards such a system that utilized Stirling conversion during the 2001 to 2015 timeframe. Flight development of the Advanced Stirling Radioisotope Generator (ASRG) was cancelled in 2013 by the Department of Energy (DOE) and NASA Headquarters primarily due to budget constraints, and the Advanced Stirling Convertor (ASC) technology contract was subsequently concluded in 2015. A new chapter of technology development has recently been initiated by the NASA RPS Program. This effort is considering all dynamic power convertor options, such as Stirling and Brayton cycles. Four convertor development contracts supporting this effort were awarded in 2017. The awarded contracts include two free-piston Stirling, one thermoacoustic Stirling, and one turbo-Brayton designs. The technology development contracts each consist of up to three phases: Design, Fabricate, and Test. As of May 2018, all contracts have completed the Design Phase, and each underwent a design review with an independent review board. Three of the contracts are planned to execute the Phase 2 option for fabrication. Convertors manifesting from these development efforts will then undergo independent validation and verification at NASA facilities, which will consist of convertor performance and RPS viability demonstrations. Example tests include launch vibration simulation, performance mapping over the environmental temperature range, and static acceleration exposure. In parallel with this renewed development effort, NASA GRC is still demonstrating free-piston Stirling convertor technology using assets from previous projects. The Stirling Research Laboratory (SRL) is still operating several convertors from previous development projects which have similarities and relevance to current contract designs. Four of which are flexure-bearing based, and another six are gas-bearing based. One of the flexure-bearing convertors has accumulated over 110,000 hours of operation, and holds the current record for maintenance-free heat-engine run-time. Another flexure-bearing convertor was recently manually shutdown after 105,620 hours of operation, then disassembled