莱布尼茨的反无穷论证

Filippo Costantini
{"title":"莱布尼茨的反无穷论证","authors":"Filippo Costantini","doi":"10.30965/26664275-02201012","DOIUrl":null,"url":null,"abstract":"This paper deals with Leibniz’s well-known reductio argument against the infinite number. I will show that while the argument is in itself valid, the assumption that Leibniz reduces to absurdity does not play a relevant role. The last paragraph of the paper reformulates the whole Leibnizian argument in plural terms (i.e. by means of a plural logic) to show that it is possible to derive the contradiction that Leibniz uses in his argument even in the absence of the premise that he refutes.","PeriodicalId":433626,"journal":{"name":"Analysis and Explication in 20th Century Philosophy","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Leibniz’s Argument Against Infinite Number\",\"authors\":\"Filippo Costantini\",\"doi\":\"10.30965/26664275-02201012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with Leibniz’s well-known reductio argument against the infinite number. I will show that while the argument is in itself valid, the assumption that Leibniz reduces to absurdity does not play a relevant role. The last paragraph of the paper reformulates the whole Leibnizian argument in plural terms (i.e. by means of a plural logic) to show that it is possible to derive the contradiction that Leibniz uses in his argument even in the absence of the premise that he refutes.\",\"PeriodicalId\":433626,\"journal\":{\"name\":\"Analysis and Explication in 20th Century Philosophy\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Explication in 20th Century Philosophy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30965/26664275-02201012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Explication in 20th Century Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30965/26664275-02201012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了莱布尼茨著名的反对无穷数的还原论证。我将表明,虽然论证本身是有效的,但莱布尼茨将其归结为荒谬的假设并没有发挥相关作用。本文的最后一段以复数形式(即通过复数逻辑)重新表述了莱布尼茨的整个论证,以表明即使在没有他所反驳的前提的情况下,也有可能推导出莱布尼茨在论证中使用的矛盾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leibniz’s Argument Against Infinite Number
This paper deals with Leibniz’s well-known reductio argument against the infinite number. I will show that while the argument is in itself valid, the assumption that Leibniz reduces to absurdity does not play a relevant role. The last paragraph of the paper reformulates the whole Leibnizian argument in plural terms (i.e. by means of a plural logic) to show that it is possible to derive the contradiction that Leibniz uses in his argument even in the absence of the premise that he refutes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信