{"title":"莱布尼茨的反无穷论证","authors":"Filippo Costantini","doi":"10.30965/26664275-02201012","DOIUrl":null,"url":null,"abstract":"This paper deals with Leibniz’s well-known reductio argument against the infinite number. I will show that while the argument is in itself valid, the assumption that Leibniz reduces to absurdity does not play a relevant role. The last paragraph of the paper reformulates the whole Leibnizian argument in plural terms (i.e. by means of a plural logic) to show that it is possible to derive the contradiction that Leibniz uses in his argument even in the absence of the premise that he refutes.","PeriodicalId":433626,"journal":{"name":"Analysis and Explication in 20th Century Philosophy","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Leibniz’s Argument Against Infinite Number\",\"authors\":\"Filippo Costantini\",\"doi\":\"10.30965/26664275-02201012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with Leibniz’s well-known reductio argument against the infinite number. I will show that while the argument is in itself valid, the assumption that Leibniz reduces to absurdity does not play a relevant role. The last paragraph of the paper reformulates the whole Leibnizian argument in plural terms (i.e. by means of a plural logic) to show that it is possible to derive the contradiction that Leibniz uses in his argument even in the absence of the premise that he refutes.\",\"PeriodicalId\":433626,\"journal\":{\"name\":\"Analysis and Explication in 20th Century Philosophy\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Explication in 20th Century Philosophy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30965/26664275-02201012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Explication in 20th Century Philosophy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30965/26664275-02201012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper deals with Leibniz’s well-known reductio argument against the infinite number. I will show that while the argument is in itself valid, the assumption that Leibniz reduces to absurdity does not play a relevant role. The last paragraph of the paper reformulates the whole Leibnizian argument in plural terms (i.e. by means of a plural logic) to show that it is possible to derive the contradiction that Leibniz uses in his argument even in the absence of the premise that he refutes.