基于深度神经网络的短期负荷预测

Tareq Hossen, S. Plathottam, R. Angamuthu, P. Ranganathan, H. Salehfar
{"title":"基于深度神经网络的短期负荷预测","authors":"Tareq Hossen, S. Plathottam, R. Angamuthu, P. Ranganathan, H. Salehfar","doi":"10.1109/NAPS.2017.8107271","DOIUrl":null,"url":null,"abstract":"Load forecasting is an important electric utility task for planning resources in Smart grid. This function also aids in predicting the behavior of energy systems in reducing dynamic uncertainties. The efficiency of the entire grid operation depends on accurate load forecasting. This paper proposes and investigates the application of a multi-layered deep neural network to the Iberian electric market (MIBEL) forecasting task. Ninety days of energy demand data are used to train the proposed model. The ninety-day period is treated as a historical dataset to train and predict the demand for day-ahead markets. The network structure is implemented using Google's machine learning Tensor-flow platform. Various combinations of activation functions were tested to achieve a better Mean Absolute percentage error (MAPE) considering the weekday and weekend variations. The tested functions include Sigmoid, Rectifier linear unit (ReLU), and Exponential linear unit (ELU). The preliminary results are promising. and show significant savings in the MAPE values using the ELU function over the other activation functions.","PeriodicalId":296428,"journal":{"name":"2017 North American Power Symposium (NAPS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Short-term load forecasting using deep neural networks (DNN)\",\"authors\":\"Tareq Hossen, S. Plathottam, R. Angamuthu, P. Ranganathan, H. Salehfar\",\"doi\":\"10.1109/NAPS.2017.8107271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Load forecasting is an important electric utility task for planning resources in Smart grid. This function also aids in predicting the behavior of energy systems in reducing dynamic uncertainties. The efficiency of the entire grid operation depends on accurate load forecasting. This paper proposes and investigates the application of a multi-layered deep neural network to the Iberian electric market (MIBEL) forecasting task. Ninety days of energy demand data are used to train the proposed model. The ninety-day period is treated as a historical dataset to train and predict the demand for day-ahead markets. The network structure is implemented using Google's machine learning Tensor-flow platform. Various combinations of activation functions were tested to achieve a better Mean Absolute percentage error (MAPE) considering the weekday and weekend variations. The tested functions include Sigmoid, Rectifier linear unit (ReLU), and Exponential linear unit (ELU). The preliminary results are promising. and show significant savings in the MAPE values using the ELU function over the other activation functions.\",\"PeriodicalId\":296428,\"journal\":{\"name\":\"2017 North American Power Symposium (NAPS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS.2017.8107271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2017.8107271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

负荷预测是智能电网资源规划的一项重要工作。该函数还有助于预测能源系统的行为,以减少动态不确定性。整个电网的运行效率取决于准确的负荷预测。本文提出并研究了多层深度神经网络在伊比利亚电力市场(MIBEL)预测中的应用。使用90天的能源需求数据来训练所提出的模型。90天的周期被视为历史数据集,用于训练和预测前一天市场的需求。网络结构是使用谷歌的机器学习tensorflow平台实现的。考虑到工作日和周末的变化,我们测试了各种激活函数的组合,以获得更好的平均绝对百分比误差(MAPE)。测试功能包括Sigmoid、整流线性单元(ReLU)和指数线性单元(ELU)。初步结果令人鼓舞。与其他激活函数相比,使用ELU函数可以显著节省MAPE值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-term load forecasting using deep neural networks (DNN)
Load forecasting is an important electric utility task for planning resources in Smart grid. This function also aids in predicting the behavior of energy systems in reducing dynamic uncertainties. The efficiency of the entire grid operation depends on accurate load forecasting. This paper proposes and investigates the application of a multi-layered deep neural network to the Iberian electric market (MIBEL) forecasting task. Ninety days of energy demand data are used to train the proposed model. The ninety-day period is treated as a historical dataset to train and predict the demand for day-ahead markets. The network structure is implemented using Google's machine learning Tensor-flow platform. Various combinations of activation functions were tested to achieve a better Mean Absolute percentage error (MAPE) considering the weekday and weekend variations. The tested functions include Sigmoid, Rectifier linear unit (ReLU), and Exponential linear unit (ELU). The preliminary results are promising. and show significant savings in the MAPE values using the ELU function over the other activation functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信