一种新的生物特征识别心电特征提取方法

Zahra Fatemian, D. Hatzinakos
{"title":"一种新的生物特征识别心电特征提取方法","authors":"Zahra Fatemian, D. Hatzinakos","doi":"10.1109/ICDSP.2009.5201143","DOIUrl":null,"url":null,"abstract":"In this paper, a new wavelet based framework is developed and evaluated for automatic analysis of single lead electrocardiogram (ECG) for application in human recognition. The proposed system utilizes a robust preprocessing stage that enables it to handle noise and outliers so that it is directly applied on the raw ECG signal. Moreover, it is capable of handling ECGs regardless of the heart rate (HR) which renders making presumptions on the individual's stress level unnecessary. One of the novelties of this paper is the design of personalized heartbeat template so that the gallery set consists of only one heartbeart per subject. This substantial reduction of the gallery size, decreases the storage requirements of the system significantly. Furthermore, the classification process is speeded up by eliminating the need for dimensionality reduction techniques such as PCA or LDA. Experimental results for identification over PTB and MIT healthy ECG databases indicate a robust subject identification rate of 99.61% using only 2 heartbeats in average for each individual.","PeriodicalId":409669,"journal":{"name":"2009 16th International Conference on Digital Signal Processing","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"143","resultStr":"{\"title\":\"A new ECG feature extractor for biometric recognition\",\"authors\":\"Zahra Fatemian, D. Hatzinakos\",\"doi\":\"10.1109/ICDSP.2009.5201143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new wavelet based framework is developed and evaluated for automatic analysis of single lead electrocardiogram (ECG) for application in human recognition. The proposed system utilizes a robust preprocessing stage that enables it to handle noise and outliers so that it is directly applied on the raw ECG signal. Moreover, it is capable of handling ECGs regardless of the heart rate (HR) which renders making presumptions on the individual's stress level unnecessary. One of the novelties of this paper is the design of personalized heartbeat template so that the gallery set consists of only one heartbeart per subject. This substantial reduction of the gallery size, decreases the storage requirements of the system significantly. Furthermore, the classification process is speeded up by eliminating the need for dimensionality reduction techniques such as PCA or LDA. Experimental results for identification over PTB and MIT healthy ECG databases indicate a robust subject identification rate of 99.61% using only 2 heartbeats in average for each individual.\",\"PeriodicalId\":409669,\"journal\":{\"name\":\"2009 16th International Conference on Digital Signal Processing\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"143\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 16th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2009.5201143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2009.5201143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 143

摘要

本文提出了一种新的基于小波的单导联心电图自动分析框架,并对其在人体识别中的应用进行了评价。该系统采用鲁棒的预处理阶段,使其能够处理噪声和异常值,从而直接应用于原始心电信号。此外,无论心率(HR)如何,它都能够处理心电图,这使得对个人压力水平的假设变得不必要。本文的新颖之处在于设计了个性化的心跳模板,使得图库集中每个主题只有一个心跳。这大大减少了库的大小,大大降低了系统的存储需求。此外,通过消除对PCA或LDA等降维技术的需要,可以加快分类过程。通过PTB和MIT健康心电图数据库进行识别的实验结果表明,仅使用每个个体平均2次心跳,受试者识别率就达99.61%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new ECG feature extractor for biometric recognition
In this paper, a new wavelet based framework is developed and evaluated for automatic analysis of single lead electrocardiogram (ECG) for application in human recognition. The proposed system utilizes a robust preprocessing stage that enables it to handle noise and outliers so that it is directly applied on the raw ECG signal. Moreover, it is capable of handling ECGs regardless of the heart rate (HR) which renders making presumptions on the individual's stress level unnecessary. One of the novelties of this paper is the design of personalized heartbeat template so that the gallery set consists of only one heartbeart per subject. This substantial reduction of the gallery size, decreases the storage requirements of the system significantly. Furthermore, the classification process is speeded up by eliminating the need for dimensionality reduction techniques such as PCA or LDA. Experimental results for identification over PTB and MIT healthy ECG databases indicate a robust subject identification rate of 99.61% using only 2 heartbeats in average for each individual.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信