使用文档主题模型生成词云

S. Sendhilkumar, M. Srivani, G. Mahalakshmi
{"title":"使用文档主题模型生成词云","authors":"S. Sendhilkumar, M. Srivani, G. Mahalakshmi","doi":"10.1109/ICRTCCM.2017.60","DOIUrl":null,"url":null,"abstract":"Many Scientific and Engineering Applications deals with the processing of large documents for data collection and analysis. As more information is available, it becomes very difficult to access the data from large documents. So we need some techniques to organize, search and understand vast quantities of information. Topic Modeling serves as an efficient method for accessing the data. In this paper, Document Topic Modeling approach has been proposed to generate topics and word cloud from the large collection of textual information.","PeriodicalId":134897,"journal":{"name":"2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Generation of Word Clouds Using Document Topic Models\",\"authors\":\"S. Sendhilkumar, M. Srivani, G. Mahalakshmi\",\"doi\":\"10.1109/ICRTCCM.2017.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many Scientific and Engineering Applications deals with the processing of large documents for data collection and analysis. As more information is available, it becomes very difficult to access the data from large documents. So we need some techniques to organize, search and understand vast quantities of information. Topic Modeling serves as an efficient method for accessing the data. In this paper, Document Topic Modeling approach has been proposed to generate topics and word cloud from the large collection of textual information.\",\"PeriodicalId\":134897,\"journal\":{\"name\":\"2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRTCCM.2017.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTCCM.2017.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

许多科学和工程应用程序处理用于数据收集和分析的大型文档。随着可用的信息越来越多,从大型文档中访问数据变得非常困难。所以我们需要一些技术来组织、搜索和理解大量的信息。主题建模是一种访问数据的有效方法。本文提出了文档主题建模方法,从大量的文本信息中生成主题和词云。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation of Word Clouds Using Document Topic Models
Many Scientific and Engineering Applications deals with the processing of large documents for data collection and analysis. As more information is available, it becomes very difficult to access the data from large documents. So we need some techniques to organize, search and understand vast quantities of information. Topic Modeling serves as an efficient method for accessing the data. In this paper, Document Topic Modeling approach has been proposed to generate topics and word cloud from the large collection of textual information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信