Sean Soderman, Anusha Kola, Maksim Podkorytov, Michaela Geyer, M. Gubanov
{"title":"混合动力车。AI:大规模结构化数据的学习搜索引擎","authors":"Sean Soderman, Anusha Kola, Maksim Podkorytov, Michaela Geyer, M. Gubanov","doi":"10.1145/3184558.3191600","DOIUrl":null,"url":null,"abstract":"Variety of Big data is a significant impediment for anyone who wants to search inside a large-scale structured dataset. For example, there are millions of tables available on the Web, but the most relevant search result does not necessarily match the keyword-query exactly due to a variety of ways to represent the same information. Here we describe Hybrid.AI, a learning search engine for large-scale structured data that uses automatically generated machine learning classifiers and Unified Famous Objects (UFOs) to return the most relevant search results from a large-scale Web tables corpora. We evaluate it over this corpora, collecting 99 queries and their results from users, and observe significant relevance gain.","PeriodicalId":235572,"journal":{"name":"Companion Proceedings of the The Web Conference 2018","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Hybrid.AI: A Learning Search Engine for Large-scale Structured Data\",\"authors\":\"Sean Soderman, Anusha Kola, Maksim Podkorytov, Michaela Geyer, M. Gubanov\",\"doi\":\"10.1145/3184558.3191600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variety of Big data is a significant impediment for anyone who wants to search inside a large-scale structured dataset. For example, there are millions of tables available on the Web, but the most relevant search result does not necessarily match the keyword-query exactly due to a variety of ways to represent the same information. Here we describe Hybrid.AI, a learning search engine for large-scale structured data that uses automatically generated machine learning classifiers and Unified Famous Objects (UFOs) to return the most relevant search results from a large-scale Web tables corpora. We evaluate it over this corpora, collecting 99 queries and their results from users, and observe significant relevance gain.\",\"PeriodicalId\":235572,\"journal\":{\"name\":\"Companion Proceedings of the The Web Conference 2018\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the The Web Conference 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3184558.3191600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the The Web Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184558.3191600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybrid.AI: A Learning Search Engine for Large-scale Structured Data
Variety of Big data is a significant impediment for anyone who wants to search inside a large-scale structured dataset. For example, there are millions of tables available on the Web, but the most relevant search result does not necessarily match the keyword-query exactly due to a variety of ways to represent the same information. Here we describe Hybrid.AI, a learning search engine for large-scale structured data that uses automatically generated machine learning classifiers and Unified Famous Objects (UFOs) to return the most relevant search results from a large-scale Web tables corpora. We evaluate it over this corpora, collecting 99 queries and their results from users, and observe significant relevance gain.