{"title":"双支路停电建模及其微分演化求解","authors":"O. Ceylan, A. Ozdemir, H. Dağ","doi":"10.1109/ISAP.2011.6082228","DOIUrl":null,"url":null,"abstract":"Power system operators need to check the system security by contingency analysis, which requires power flow solutions repeatedly. AC power flow is computationally slow even for a moderately sized system. Thus, fast and accurate outage models and approximated solutions have been developed. This paper adopts a single branch outage model to a double branch outage one. The final constrained optimization problem resulted from modeling is then solved by using differential evolution method. Simulation results for IEEE 30 and 118 bus test systems are presented and compared to those of full AC load flow in terms of solution accuracy.","PeriodicalId":424662,"journal":{"name":"2011 16th International Conference on Intelligent System Applications to Power Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Double branch outage modeling and its solution using differential evolution method\",\"authors\":\"O. Ceylan, A. Ozdemir, H. Dağ\",\"doi\":\"10.1109/ISAP.2011.6082228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power system operators need to check the system security by contingency analysis, which requires power flow solutions repeatedly. AC power flow is computationally slow even for a moderately sized system. Thus, fast and accurate outage models and approximated solutions have been developed. This paper adopts a single branch outage model to a double branch outage one. The final constrained optimization problem resulted from modeling is then solved by using differential evolution method. Simulation results for IEEE 30 and 118 bus test systems are presented and compared to those of full AC load flow in terms of solution accuracy.\",\"PeriodicalId\":424662,\"journal\":{\"name\":\"2011 16th International Conference on Intelligent System Applications to Power Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 16th International Conference on Intelligent System Applications to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2011.6082228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 16th International Conference on Intelligent System Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2011.6082228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Double branch outage modeling and its solution using differential evolution method
Power system operators need to check the system security by contingency analysis, which requires power flow solutions repeatedly. AC power flow is computationally slow even for a moderately sized system. Thus, fast and accurate outage models and approximated solutions have been developed. This paper adopts a single branch outage model to a double branch outage one. The final constrained optimization problem resulted from modeling is then solved by using differential evolution method. Simulation results for IEEE 30 and 118 bus test systems are presented and compared to those of full AC load flow in terms of solution accuracy.