软件质量评估的神经网络技术

R. Kumar, S. Rai, J. Trahan
{"title":"软件质量评估的神经网络技术","authors":"R. Kumar, S. Rai, J. Trahan","doi":"10.1109/RAMS.1998.653706","DOIUrl":null,"url":null,"abstract":"Software quality modeling involves identifying fault-prone modules and predicting the number of errors in the early stages of the software development life cycle. This paper investigates the viability of several neural network techniques for software quality evaluation (SQE). We have implemented a principal component analysis technique (used in SQE) with two different neural network training rules, and have classified software modules as fault-prone or nonfault-prone using software complexity metric data. Our results reveal that neural network techniques provide a good management tool in a software engineering environment.","PeriodicalId":275301,"journal":{"name":"Annual Reliability and Maintainability Symposium. 1998 Proceedings. International Symposium on Product Quality and Integrity","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Neural-network techniques for software-quality evaluation\",\"authors\":\"R. Kumar, S. Rai, J. Trahan\",\"doi\":\"10.1109/RAMS.1998.653706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software quality modeling involves identifying fault-prone modules and predicting the number of errors in the early stages of the software development life cycle. This paper investigates the viability of several neural network techniques for software quality evaluation (SQE). We have implemented a principal component analysis technique (used in SQE) with two different neural network training rules, and have classified software modules as fault-prone or nonfault-prone using software complexity metric data. Our results reveal that neural network techniques provide a good management tool in a software engineering environment.\",\"PeriodicalId\":275301,\"journal\":{\"name\":\"Annual Reliability and Maintainability Symposium. 1998 Proceedings. International Symposium on Product Quality and Integrity\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Reliability and Maintainability Symposium. 1998 Proceedings. International Symposium on Product Quality and Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMS.1998.653706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reliability and Maintainability Symposium. 1998 Proceedings. International Symposium on Product Quality and Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS.1998.653706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

软件质量建模涉及识别容易出错的模块,并在软件开发生命周期的早期阶段预测错误的数量。本文研究了几种用于软件质量评估的神经网络技术的可行性。我们使用两种不同的神经网络训练规则实现了主成分分析技术(在SQE中使用),并使用软件复杂性度量数据将软件模块分类为易故障或非易故障。我们的研究结果表明,神经网络技术在软件工程环境中提供了一个很好的管理工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural-network techniques for software-quality evaluation
Software quality modeling involves identifying fault-prone modules and predicting the number of errors in the early stages of the software development life cycle. This paper investigates the viability of several neural network techniques for software quality evaluation (SQE). We have implemented a principal component analysis technique (used in SQE) with two different neural network training rules, and have classified software modules as fault-prone or nonfault-prone using software complexity metric data. Our results reveal that neural network techniques provide a good management tool in a software engineering environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信