{"title":"基于色彩空间的雾环境烟雾检测","authors":"M. E. Özbek, Uğur Yıldız","doi":"10.18100/ijamec.973440","DOIUrl":null,"url":null,"abstract":"Detection of smoke from videos captured by surveillance cameras in outdoor environments is one of the useful outcome of Internet of Things (IoT) applications. The potential benefit increases when deep learning (DL) architectures are involved. However, an inherent difficulty is to detect smoke while natural events like fog exists. The effectiveness of color spaces in detection performance has not yet fully evaluated in those architectures. Moreover, the energy and memory requirements of DL architectures may not be applicable for handling IoT implementation demands. Therefore, in this work, a DL architecture with a suitable color space model, applicable for IoT implementations is proposed to detect smoke from videos in foggy environment. By collecting several videos including smoke samples, the performance comparison of popular and the state-of-the-art DL architectures denoted the outperforming result according to both accuracy and memory usage.","PeriodicalId":120305,"journal":{"name":"International Journal of Applied Mathematics Electronics and Computers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Smoke detection from foggy environment based on color spaces\",\"authors\":\"M. E. Özbek, Uğur Yıldız\",\"doi\":\"10.18100/ijamec.973440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of smoke from videos captured by surveillance cameras in outdoor environments is one of the useful outcome of Internet of Things (IoT) applications. The potential benefit increases when deep learning (DL) architectures are involved. However, an inherent difficulty is to detect smoke while natural events like fog exists. The effectiveness of color spaces in detection performance has not yet fully evaluated in those architectures. Moreover, the energy and memory requirements of DL architectures may not be applicable for handling IoT implementation demands. Therefore, in this work, a DL architecture with a suitable color space model, applicable for IoT implementations is proposed to detect smoke from videos in foggy environment. By collecting several videos including smoke samples, the performance comparison of popular and the state-of-the-art DL architectures denoted the outperforming result according to both accuracy and memory usage.\",\"PeriodicalId\":120305,\"journal\":{\"name\":\"International Journal of Applied Mathematics Electronics and Computers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics Electronics and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18100/ijamec.973440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics Electronics and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18100/ijamec.973440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Smoke detection from foggy environment based on color spaces
Detection of smoke from videos captured by surveillance cameras in outdoor environments is one of the useful outcome of Internet of Things (IoT) applications. The potential benefit increases when deep learning (DL) architectures are involved. However, an inherent difficulty is to detect smoke while natural events like fog exists. The effectiveness of color spaces in detection performance has not yet fully evaluated in those architectures. Moreover, the energy and memory requirements of DL architectures may not be applicable for handling IoT implementation demands. Therefore, in this work, a DL architecture with a suitable color space model, applicable for IoT implementations is proposed to detect smoke from videos in foggy environment. By collecting several videos including smoke samples, the performance comparison of popular and the state-of-the-art DL architectures denoted the outperforming result according to both accuracy and memory usage.