{"title":"结合几种神经网络进行有效的二次结构预测","authors":"K. Guimaraes, J. Melo, George D. C. Cavalcanti","doi":"10.1109/BIBE.2003.1188981","DOIUrl":null,"url":null,"abstract":"The prediction of secondary structure is treated with a simple and efficient method. Combining only three neural networks, an average Q/sub 3/ accuracy prediction by residues of 75.93% is achieved. This value is better than the best results reported on the same test and training database, CB396, using the same validation method. For a second database, RS126, an average Q/sub 3/ accuracy of 74.13% is attained, which is better than each individual method, being defeated only by CONSENSUS, a rather intricate engine, which is a combination of several methods. The networks are trained with RPROP an efficient variation of the back-propagation algorithm. Five combination rules are applied independently afterwards. Each one increases the accuracy of prediction by at least 1%, due to the fact that each network used converges to a different local minimum. The Product rule derives the best results. The predictor described here can be accessed at http://biolab.cin.ufpe.br/tools/.","PeriodicalId":178814,"journal":{"name":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Combining few neural networks for effective secondary structure prediction\",\"authors\":\"K. Guimaraes, J. Melo, George D. C. Cavalcanti\",\"doi\":\"10.1109/BIBE.2003.1188981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prediction of secondary structure is treated with a simple and efficient method. Combining only three neural networks, an average Q/sub 3/ accuracy prediction by residues of 75.93% is achieved. This value is better than the best results reported on the same test and training database, CB396, using the same validation method. For a second database, RS126, an average Q/sub 3/ accuracy of 74.13% is attained, which is better than each individual method, being defeated only by CONSENSUS, a rather intricate engine, which is a combination of several methods. The networks are trained with RPROP an efficient variation of the back-propagation algorithm. Five combination rules are applied independently afterwards. Each one increases the accuracy of prediction by at least 1%, due to the fact that each network used converges to a different local minimum. The Product rule derives the best results. The predictor described here can be accessed at http://biolab.cin.ufpe.br/tools/.\",\"PeriodicalId\":178814,\"journal\":{\"name\":\"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2003.1188981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third IEEE Symposium on Bioinformatics and Bioengineering, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2003.1188981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combining few neural networks for effective secondary structure prediction
The prediction of secondary structure is treated with a simple and efficient method. Combining only three neural networks, an average Q/sub 3/ accuracy prediction by residues of 75.93% is achieved. This value is better than the best results reported on the same test and training database, CB396, using the same validation method. For a second database, RS126, an average Q/sub 3/ accuracy of 74.13% is attained, which is better than each individual method, being defeated only by CONSENSUS, a rather intricate engine, which is a combination of several methods. The networks are trained with RPROP an efficient variation of the back-propagation algorithm. Five combination rules are applied independently afterwards. Each one increases the accuracy of prediction by at least 1%, due to the fact that each network used converges to a different local minimum. The Product rule derives the best results. The predictor described here can be accessed at http://biolab.cin.ufpe.br/tools/.