张拉整体结构变形机翼的结构适宜性研究

D. Myszka, J. Joo
{"title":"张拉整体结构变形机翼的结构适宜性研究","authors":"D. Myszka, J. Joo","doi":"10.1115/DETC2018-85945","DOIUrl":null,"url":null,"abstract":"This paper presents an investigation into the structural characterization of tensegrity systems for potential use as aircraft structures, especially for morphing aircraft. Morphing aircraft provide multi-role and multi-mission capabilities by adapting their performance to different in-flight requirements. Flexible elements must be included within the structure to permit morphing capabilities compared to conventional single mission aircraft, which are designed for high rigidity and not ideal for shape morphing applications.\n Tensegrity systems are structures that consist of a series of connected cables, in tension, and struts, in compression, that exist in a self-equilibrium state. Since the struts and cables are loaded axially, external loads are efficiently distributed throughout the tensegrity components resulting in a strong and stiff structure. Adjusting the pretension of the tensegrity will tailor the structural characteristics as needed without a basic configuration change. By changing the length of the cables or struts, tensegrity systems are capable of movement while maintaining their inherent strength and rigidity. This makes tensegrity systems an attractive candidate for morphing aircraft structures.\n This paper quantifies the strength and rigidity of a single module of various tensegrity systems along with traditional structures to assess their ability to serve as aircraft wings. Those properties are evaluated after boundary conditions are carefully selected to avoid adding unnecessary stiffness. Lastly, a concept for a tensegrity morphing aircraft wing is presented.","PeriodicalId":132121,"journal":{"name":"Volume 5B: 42nd Mechanisms and Robotics Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Study on the Structural Suitability of Tensegrity Structures to Serve As Morphing Aircraft Wings\",\"authors\":\"D. Myszka, J. Joo\",\"doi\":\"10.1115/DETC2018-85945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an investigation into the structural characterization of tensegrity systems for potential use as aircraft structures, especially for morphing aircraft. Morphing aircraft provide multi-role and multi-mission capabilities by adapting their performance to different in-flight requirements. Flexible elements must be included within the structure to permit morphing capabilities compared to conventional single mission aircraft, which are designed for high rigidity and not ideal for shape morphing applications.\\n Tensegrity systems are structures that consist of a series of connected cables, in tension, and struts, in compression, that exist in a self-equilibrium state. Since the struts and cables are loaded axially, external loads are efficiently distributed throughout the tensegrity components resulting in a strong and stiff structure. Adjusting the pretension of the tensegrity will tailor the structural characteristics as needed without a basic configuration change. By changing the length of the cables or struts, tensegrity systems are capable of movement while maintaining their inherent strength and rigidity. This makes tensegrity systems an attractive candidate for morphing aircraft structures.\\n This paper quantifies the strength and rigidity of a single module of various tensegrity systems along with traditional structures to assess their ability to serve as aircraft wings. Those properties are evaluated after boundary conditions are carefully selected to avoid adding unnecessary stiffness. Lastly, a concept for a tensegrity morphing aircraft wing is presented.\",\"PeriodicalId\":132121,\"journal\":{\"name\":\"Volume 5B: 42nd Mechanisms and Robotics Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5B: 42nd Mechanisms and Robotics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2018-85945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5B: 42nd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一项研究的张拉整体系统的结构特性,为潜在的用途飞机结构,特别是变形飞机。变形飞机通过调整其性能以适应不同的飞行要求,从而提供多角色和多任务能力。与传统的单任务飞机相比,柔性元件必须包含在结构中,以允许变形能力。传统的单任务飞机设计为高刚性,不适合形状变形应用。张拉整体系统是由一系列相互连接的、处于受拉状态的索和处于受压状态的支撑组成的结构,它们处于自平衡状态。由于支柱和电缆是轴向加载的,外部载荷有效地分布在整个张拉整体组件中,从而形成坚固而刚性的结构。调整张拉整体的预张力将根据需要调整结构特征,而无需改变基本配置。通过改变缆索或支柱的长度,张拉整体系统能够在保持其固有强度和刚度的同时运动。这使得张拉整体系统成为变形飞机结构的一个有吸引力的候选者。本文量化了各种张拉整体系统的单个模块的强度和刚度以及传统结构,以评估它们作为飞机机翼的能力。在仔细选择边界条件以避免增加不必要的刚度后,对这些特性进行评估。最后,提出了张拉整体变形机翼的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on the Structural Suitability of Tensegrity Structures to Serve As Morphing Aircraft Wings
This paper presents an investigation into the structural characterization of tensegrity systems for potential use as aircraft structures, especially for morphing aircraft. Morphing aircraft provide multi-role and multi-mission capabilities by adapting their performance to different in-flight requirements. Flexible elements must be included within the structure to permit morphing capabilities compared to conventional single mission aircraft, which are designed for high rigidity and not ideal for shape morphing applications. Tensegrity systems are structures that consist of a series of connected cables, in tension, and struts, in compression, that exist in a self-equilibrium state. Since the struts and cables are loaded axially, external loads are efficiently distributed throughout the tensegrity components resulting in a strong and stiff structure. Adjusting the pretension of the tensegrity will tailor the structural characteristics as needed without a basic configuration change. By changing the length of the cables or struts, tensegrity systems are capable of movement while maintaining their inherent strength and rigidity. This makes tensegrity systems an attractive candidate for morphing aircraft structures. This paper quantifies the strength and rigidity of a single module of various tensegrity systems along with traditional structures to assess their ability to serve as aircraft wings. Those properties are evaluated after boundary conditions are carefully selected to avoid adding unnecessary stiffness. Lastly, a concept for a tensegrity morphing aircraft wing is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信