数据并行编程模型综述

K. Hou, Jing Zhang, Junhuai Li
{"title":"数据并行编程模型综述","authors":"K. Hou, Jing Zhang, Junhuai Li","doi":"10.1109/ICCSE.2012.6295154","DOIUrl":null,"url":null,"abstract":"Data-parallel programming model (DPPM for short) specialized for data-intensive computing becomes considerable popular because it simplifies the development of distributed parallel programs. DPPMs are classified into two categories: 1) MapReduce, Dryad; and 2) Piccolo, Function Flow, etc. based on their maturity. We analyze and compare these typical models by deployment, application, data partition, communication, fault tolerance and so on. Finally, we pay more attention to discussing development of key technologies which are deployment of storage and computation, task partition and fault tolerance in DPPM.","PeriodicalId":264063,"journal":{"name":"2012 7th International Conference on Computer Science & Education (ICCSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Review of data-parallel programming model\",\"authors\":\"K. Hou, Jing Zhang, Junhuai Li\",\"doi\":\"10.1109/ICCSE.2012.6295154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-parallel programming model (DPPM for short) specialized for data-intensive computing becomes considerable popular because it simplifies the development of distributed parallel programs. DPPMs are classified into two categories: 1) MapReduce, Dryad; and 2) Piccolo, Function Flow, etc. based on their maturity. We analyze and compare these typical models by deployment, application, data partition, communication, fault tolerance and so on. Finally, we pay more attention to discussing development of key technologies which are deployment of storage and computation, task partition and fault tolerance in DPPM.\",\"PeriodicalId\":264063,\"journal\":{\"name\":\"2012 7th International Conference on Computer Science & Education (ICCSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 7th International Conference on Computer Science & Education (ICCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSE.2012.6295154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 7th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2012.6295154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

专门用于数据密集型计算的数据并行编程模型(DPPM)由于简化了分布式并行程序的开发而变得相当流行。dppm分为两类:1)MapReduce, Dryad;2) Piccolo, Function Flow等。从部署、应用、数据分区、通信、容错等方面对这些典型模型进行了分析和比较。最后,重点讨论了DPPM中存储与计算部署、任务划分和容错等关键技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of data-parallel programming model
Data-parallel programming model (DPPM for short) specialized for data-intensive computing becomes considerable popular because it simplifies the development of distributed parallel programs. DPPMs are classified into two categories: 1) MapReduce, Dryad; and 2) Piccolo, Function Flow, etc. based on their maturity. We analyze and compare these typical models by deployment, application, data partition, communication, fault tolerance and so on. Finally, we pay more attention to discussing development of key technologies which are deployment of storage and computation, task partition and fault tolerance in DPPM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信