基于字典学习的太赫兹MU-SIMO系统的稀疏级联信道估计

Priyanka Maity, Sunaina Khatri, Suraj Srivastava, A. Jagannatham
{"title":"基于字典学习的太赫兹MU-SIMO系统的稀疏级联信道估计","authors":"Priyanka Maity, Sunaina Khatri, Suraj Srivastava, A. Jagannatham","doi":"10.1109/SSP53291.2023.10207987","DOIUrl":null,"url":null,"abstract":"This work conceives a sparse channel estimation (CE) scheme for multi-user (MU) intelligent reflecting surface (IRS)-aided Terahertz (THz) systems. The proposed framework also incorporates hardware impairments that arise due to manufacturing errors in practical THz systems, such as mutual coupling, irregular antenna spacing, and antenna gain/phase errors. A dictionary learning (DL) algorithm is proposed to learn the best sparsifying dictionary for an IRS-aided THz system in the presence of hardware impairments. The dictionary thus obtained is subsequently employed to leverage the sparsity inherent in the IRS-aided cascaded THz system toward channel estimation (CE). Simulation results corroborate our analytical findings and demonstrate the improved performance with respect to an agnostic scheme that ignores the non-idealities.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dictionary Learning (DL)-based Sparse Cascaded Channel Estimation in IRS-assisted Terahertz MU-SIMO Systems With Hardware Impairments\",\"authors\":\"Priyanka Maity, Sunaina Khatri, Suraj Srivastava, A. Jagannatham\",\"doi\":\"10.1109/SSP53291.2023.10207987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work conceives a sparse channel estimation (CE) scheme for multi-user (MU) intelligent reflecting surface (IRS)-aided Terahertz (THz) systems. The proposed framework also incorporates hardware impairments that arise due to manufacturing errors in practical THz systems, such as mutual coupling, irregular antenna spacing, and antenna gain/phase errors. A dictionary learning (DL) algorithm is proposed to learn the best sparsifying dictionary for an IRS-aided THz system in the presence of hardware impairments. The dictionary thus obtained is subsequently employed to leverage the sparsity inherent in the IRS-aided cascaded THz system toward channel estimation (CE). Simulation results corroborate our analytical findings and demonstrate the improved performance with respect to an agnostic scheme that ignores the non-idealities.\",\"PeriodicalId\":296346,\"journal\":{\"name\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP53291.2023.10207987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10207987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种多用户(MU)智能反射面(IRS)辅助太赫兹(THz)系统的稀疏信道估计(CE)方案。该框架还包含了实际太赫兹系统中由于制造误差而产生的硬件缺陷,例如互耦合、不规则天线间距和天线增益/相位误差。提出了一种字典学习(DL)算法,用于在存在硬件缺陷的irs辅助太赫兹系统中学习最佳稀疏字典。由此获得的字典随后被用于利用irs辅助级联太赫兹系统固有的稀疏性进行信道估计(CE)。仿真结果证实了我们的分析结果,并证明了相对于忽略非理想性的不可知论方案的改进性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dictionary Learning (DL)-based Sparse Cascaded Channel Estimation in IRS-assisted Terahertz MU-SIMO Systems With Hardware Impairments
This work conceives a sparse channel estimation (CE) scheme for multi-user (MU) intelligent reflecting surface (IRS)-aided Terahertz (THz) systems. The proposed framework also incorporates hardware impairments that arise due to manufacturing errors in practical THz systems, such as mutual coupling, irregular antenna spacing, and antenna gain/phase errors. A dictionary learning (DL) algorithm is proposed to learn the best sparsifying dictionary for an IRS-aided THz system in the presence of hardware impairments. The dictionary thus obtained is subsequently employed to leverage the sparsity inherent in the IRS-aided cascaded THz system toward channel estimation (CE). Simulation results corroborate our analytical findings and demonstrate the improved performance with respect to an agnostic scheme that ignores the non-idealities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信