使用粒子滤波的矩函数诱导似然:粒子GMM和标准MCMC方法的比较

Fabio Franco
{"title":"使用粒子滤波的矩函数诱导似然:粒子GMM和标准MCMC方法的比较","authors":"Fabio Franco","doi":"10.2139/ssrn.3498244","DOIUrl":null,"url":null,"abstract":"Particle filtering is a useful statistical tool which can be used to make inference on the latent variables and the structural parameters of state space models by employing it inside MCMC algorithms (Flury and Shephard, 2011). It only relies on two assumptions (Gordon et al, 1993): a: The ability to simulate from the dynamic of the model; b: The predictive measurement density can be computed. In practice the second assumption may not be obvious and implementations of particle filter can become difficult to conduct. Gallant, Giacomini and Ragusa (2016) have recently developed a particle filter which does not rely on the structural form of the measurement equation. This method uses a set of moment conditions to induce the likelihood function of a structural model under a GMM criteria. The semiparametric structure allows to use particle filtering where the standard techniques are not applicable or difficult to implement. On the other hand, the GMM representation is less efficient than the standard technique and in some cases it can affect the proper functioning of particle filter and in turn deliver poor estimates. The contribution of this paper is to provide a comparison between the standard techniques, as Kalman filter and standard bootstrap particle filter, and the method proposed by Gallant et al (2016) in order to measure the performance of particle filter with GMM representation.","PeriodicalId":416571,"journal":{"name":"CEIS: Centre for Economic & International Studies Working Paper Series","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Likelihood Induced by Moment Functions using Particle Filter: A Comparison of Particle GMM and Standard MCMC Methods\",\"authors\":\"Fabio Franco\",\"doi\":\"10.2139/ssrn.3498244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle filtering is a useful statistical tool which can be used to make inference on the latent variables and the structural parameters of state space models by employing it inside MCMC algorithms (Flury and Shephard, 2011). It only relies on two assumptions (Gordon et al, 1993): a: The ability to simulate from the dynamic of the model; b: The predictive measurement density can be computed. In practice the second assumption may not be obvious and implementations of particle filter can become difficult to conduct. Gallant, Giacomini and Ragusa (2016) have recently developed a particle filter which does not rely on the structural form of the measurement equation. This method uses a set of moment conditions to induce the likelihood function of a structural model under a GMM criteria. The semiparametric structure allows to use particle filtering where the standard techniques are not applicable or difficult to implement. On the other hand, the GMM representation is less efficient than the standard technique and in some cases it can affect the proper functioning of particle filter and in turn deliver poor estimates. The contribution of this paper is to provide a comparison between the standard techniques, as Kalman filter and standard bootstrap particle filter, and the method proposed by Gallant et al (2016) in order to measure the performance of particle filter with GMM representation.\",\"PeriodicalId\":416571,\"journal\":{\"name\":\"CEIS: Centre for Economic & International Studies Working Paper Series\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEIS: Centre for Economic & International Studies Working Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3498244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEIS: Centre for Economic & International Studies Working Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3498244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

粒子滤波是一种有用的统计工具,通过在MCMC算法中使用它,可以对状态空间模型的潜在变量和结构参数进行推断(Flury和Shephard, 2011)。它只依赖于两个假设(Gordon et al, 1993): a:从模型的动态进行模拟的能力;b:可计算预测测量密度。在实践中,第二个假设可能不明显,粒子滤波的实现可能变得难以进行。Gallant, Giacomini和Ragusa(2016)最近开发了一种不依赖于测量方程结构形式的粒子滤波器。该方法利用一组力矩条件来推导GMM准则下结构模型的似然函数。半参数结构允许在标准技术不适用或难以实现的地方使用粒子滤波。另一方面,GMM表示比标准技术效率低,在某些情况下,它会影响粒子滤波器的正常功能,从而提供较差的估计。本文的贡献在于将Kalman滤波和标准自举粒子滤波等标准技术与Gallant等人(2016)提出的方法进行比较,以衡量具有GMM表示的粒子滤波的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Likelihood Induced by Moment Functions using Particle Filter: A Comparison of Particle GMM and Standard MCMC Methods
Particle filtering is a useful statistical tool which can be used to make inference on the latent variables and the structural parameters of state space models by employing it inside MCMC algorithms (Flury and Shephard, 2011). It only relies on two assumptions (Gordon et al, 1993): a: The ability to simulate from the dynamic of the model; b: The predictive measurement density can be computed. In practice the second assumption may not be obvious and implementations of particle filter can become difficult to conduct. Gallant, Giacomini and Ragusa (2016) have recently developed a particle filter which does not rely on the structural form of the measurement equation. This method uses a set of moment conditions to induce the likelihood function of a structural model under a GMM criteria. The semiparametric structure allows to use particle filtering where the standard techniques are not applicable or difficult to implement. On the other hand, the GMM representation is less efficient than the standard technique and in some cases it can affect the proper functioning of particle filter and in turn deliver poor estimates. The contribution of this paper is to provide a comparison between the standard techniques, as Kalman filter and standard bootstrap particle filter, and the method proposed by Gallant et al (2016) in order to measure the performance of particle filter with GMM representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信