{"title":"Jeffreys先验得到渐近极大极小冗余","authors":"B. S. Clarke, A. Barron","doi":"10.1109/WITS.1994.513856","DOIUrl":null,"url":null,"abstract":"We determine the asymptotic minimax redundancy of universal data compression in a parametric setting and show that it corresponds to the use of Jeffreys prior. Statistically, this formulation of the coding problem can be interpreted in a prior selection context and in an estimation context.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Jeffreys' prior yields the asymptotic minimax redundancy\",\"authors\":\"B. S. Clarke, A. Barron\",\"doi\":\"10.1109/WITS.1994.513856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine the asymptotic minimax redundancy of universal data compression in a parametric setting and show that it corresponds to the use of Jeffreys prior. Statistically, this formulation of the coding problem can be interpreted in a prior selection context and in an estimation context.\",\"PeriodicalId\":423518,\"journal\":{\"name\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WITS.1994.513856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Jeffreys' prior yields the asymptotic minimax redundancy
We determine the asymptotic minimax redundancy of universal data compression in a parametric setting and show that it corresponds to the use of Jeffreys prior. Statistically, this formulation of the coding problem can be interpreted in a prior selection context and in an estimation context.