列出交叉错误模式的解码

A. Wachter-Zeh
{"title":"列出交叉错误模式的解码","authors":"A. Wachter-Zeh","doi":"10.1109/ISIT.2014.6875030","DOIUrl":null,"url":null,"abstract":"List decoding of crisscross errors in arrays over finite fields is considered. A Johnson-like upper bound on the maximum list size in the cover metric is derived, showing that the list of codewords has polynomial size up to a certain radius. Further, a simple list decoding algorithm for a known optimal code construction is presented, which decodes errors in the cover metric up to our upper bound. These results reveal significant differences between the cover metric and the rank metric.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"List decoding of crisscross error patterns\",\"authors\":\"A. Wachter-Zeh\",\"doi\":\"10.1109/ISIT.2014.6875030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"List decoding of crisscross errors in arrays over finite fields is considered. A Johnson-like upper bound on the maximum list size in the cover metric is derived, showing that the list of codewords has polynomial size up to a certain radius. Further, a simple list decoding algorithm for a known optimal code construction is presented, which decodes errors in the cover metric up to our upper bound. These results reveal significant differences between the cover metric and the rank metric.\",\"PeriodicalId\":127191,\"journal\":{\"name\":\"2014 IEEE International Symposium on Information Theory\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2014.6875030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

考虑了有限域数组中纵横交错错误的列表解码。导出了覆盖度量中最大列表大小的类似johnson的上界,表明码字列表具有直至一定半径的多项式大小。此外,针对已知的最优码结构,提出了一种简单的列表解码算法,该算法对覆盖度量中的错误进行解码,直到我们的上界。这些结果揭示了覆盖度量和等级度量之间的显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
List decoding of crisscross error patterns
List decoding of crisscross errors in arrays over finite fields is considered. A Johnson-like upper bound on the maximum list size in the cover metric is derived, showing that the list of codewords has polynomial size up to a certain radius. Further, a simple list decoding algorithm for a known optimal code construction is presented, which decodes errors in the cover metric up to our upper bound. These results reveal significant differences between the cover metric and the rank metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信