基于改进SVDD的水下机器人推力器故障诊断方法

Yujia Wang, Wei Zhang, Fuqiang Di, Wei Gong
{"title":"基于改进SVDD的水下机器人推力器故障诊断方法","authors":"Yujia Wang, Wei Zhang, Fuqiang Di, Wei Gong","doi":"10.1109/USYS.2018.8778887","DOIUrl":null,"url":null,"abstract":"In the research of thruster fault diagnosis method using Support Vector Domain Description (SVDD) for Autonomous Underwater Vehicle (AUV), it is difficult to get the optimal kernel function parameters of the SVDD classification model by the traditional parameter optimization method. To solve these problems, an improved SVDD fault pattern classification method is investigated. It improves the classification performance of the SVDD model by describing the distribution forms and rules of the mapping data in a high dimensional feature space and optimizing the kernel function parameters based on the non-Gaussian measurement of maximum entropy principle. The results of the thruster fault simulation experiment of the “Beaver-II” AUV prototype show the effectiveness of the proposed method.","PeriodicalId":299885,"journal":{"name":"2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications (USYS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An AUV thruster fault diagnosis method based on the improved SVDD\",\"authors\":\"Yujia Wang, Wei Zhang, Fuqiang Di, Wei Gong\",\"doi\":\"10.1109/USYS.2018.8778887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the research of thruster fault diagnosis method using Support Vector Domain Description (SVDD) for Autonomous Underwater Vehicle (AUV), it is difficult to get the optimal kernel function parameters of the SVDD classification model by the traditional parameter optimization method. To solve these problems, an improved SVDD fault pattern classification method is investigated. It improves the classification performance of the SVDD model by describing the distribution forms and rules of the mapping data in a high dimensional feature space and optimizing the kernel function parameters based on the non-Gaussian measurement of maximum entropy principle. The results of the thruster fault simulation experiment of the “Beaver-II” AUV prototype show the effectiveness of the proposed method.\",\"PeriodicalId\":299885,\"journal\":{\"name\":\"2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications (USYS)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications (USYS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/USYS.2018.8778887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications (USYS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USYS.2018.8778887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在基于支持向量域描述(SVDD)的自主水下航行器(AUV)推进器故障诊断方法研究中,传统的参数优化方法难以获得SVDD分类模型的最优核函数参数。为了解决这些问题,研究了一种改进的SVDD故障模式分类方法。通过描述映射数据在高维特征空间中的分布形式和规律,并基于最大熵的非高斯测量原理对核函数参数进行优化,提高了SVDD模型的分类性能。“海狸- ii”型水下航行器原型机的推力器故障仿真实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An AUV thruster fault diagnosis method based on the improved SVDD
In the research of thruster fault diagnosis method using Support Vector Domain Description (SVDD) for Autonomous Underwater Vehicle (AUV), it is difficult to get the optimal kernel function parameters of the SVDD classification model by the traditional parameter optimization method. To solve these problems, an improved SVDD fault pattern classification method is investigated. It improves the classification performance of the SVDD model by describing the distribution forms and rules of the mapping data in a high dimensional feature space and optimizing the kernel function parameters based on the non-Gaussian measurement of maximum entropy principle. The results of the thruster fault simulation experiment of the “Beaver-II” AUV prototype show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信