基于模糊逻辑的山区土壤分类数字制图

Ángel R. Valera, M. C. Pineda, J. Viloria
{"title":"基于模糊逻辑的山区土壤分类数字制图","authors":"Ángel R. Valera, M. C. Pineda, J. Viloria","doi":"10.24294/jgc.v5i2.1674","DOIUrl":null,"url":null,"abstract":"In order to strengthen the study of soil-landscape relationships in mountain areas, a digital soil mapping approach based on fuzzy set theory was applied. Initially, soil properties were estimated with the regression kriging (RK) method, combining soil data and auxiliary information derived from a digital elevation model (DEM) and satellite images. Subsequently, the grouping of soil properties in raster format was performed with the fuzzy c-means (FCM) algorithm, whose final product resulted in a fuzzy soil class variation model at a semi-detailed scale. The validation of the model showed an overall reliability of 88% and a Kappa index of 84%, which shows the usefulness of fuzzy clustering in the evaluation of soil-landscape relationships and in the correlation with soil taxonomic categories.","PeriodicalId":363659,"journal":{"name":"Journal of Geography and Cartography","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital cartography of soil classes with fuzzy logic in mountain areas\",\"authors\":\"Ángel R. Valera, M. C. Pineda, J. Viloria\",\"doi\":\"10.24294/jgc.v5i2.1674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to strengthen the study of soil-landscape relationships in mountain areas, a digital soil mapping approach based on fuzzy set theory was applied. Initially, soil properties were estimated with the regression kriging (RK) method, combining soil data and auxiliary information derived from a digital elevation model (DEM) and satellite images. Subsequently, the grouping of soil properties in raster format was performed with the fuzzy c-means (FCM) algorithm, whose final product resulted in a fuzzy soil class variation model at a semi-detailed scale. The validation of the model showed an overall reliability of 88% and a Kappa index of 84%, which shows the usefulness of fuzzy clustering in the evaluation of soil-landscape relationships and in the correlation with soil taxonomic categories.\",\"PeriodicalId\":363659,\"journal\":{\"name\":\"Journal of Geography and Cartography\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geography and Cartography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24294/jgc.v5i2.1674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geography and Cartography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24294/jgc.v5i2.1674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了加强山区土壤-景观关系的研究,提出了一种基于模糊集理论的数字土壤制图方法。首先,将土壤数据与数字高程模型(DEM)和卫星图像的辅助信息相结合,采用回归克里金(RK)方法估算土壤性质。随后,使用模糊c均值(FCM)算法对栅格格式的土壤属性进行分组,最终得到半精细尺度的模糊土壤类别变化模型。结果表明,该模型的总体信度为88%,Kappa指数为84%,表明模糊聚类在评价土壤-景观关系以及与土壤分类类别的相关性方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital cartography of soil classes with fuzzy logic in mountain areas
In order to strengthen the study of soil-landscape relationships in mountain areas, a digital soil mapping approach based on fuzzy set theory was applied. Initially, soil properties were estimated with the regression kriging (RK) method, combining soil data and auxiliary information derived from a digital elevation model (DEM) and satellite images. Subsequently, the grouping of soil properties in raster format was performed with the fuzzy c-means (FCM) algorithm, whose final product resulted in a fuzzy soil class variation model at a semi-detailed scale. The validation of the model showed an overall reliability of 88% and a Kappa index of 84%, which shows the usefulness of fuzzy clustering in the evaluation of soil-landscape relationships and in the correlation with soil taxonomic categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信