基于局部密集区域的时空数据上下文异常检测

G. Anand, R. Nayak
{"title":"基于局部密集区域的时空数据上下文异常检测","authors":"G. Anand, R. Nayak","doi":"10.1109/ICTAI.2018.00149","DOIUrl":null,"url":null,"abstract":"With the advancements in computing and location-acquisition technologies, large volumes of spatio-temporal tra-jectory data are being generated and stored. Anomaly detection in trajectory data is significant for several applications. Using a data-driven spatio-temporal context in the form of geographical sub-regions and different time-periods can enhance the relevance of detected anomalies. We propose a novel scalable contextual anomaly detection method for trajectory data using the regional density information. The effectiveness and scalability of the proposed method is shown through the empirical analysis and benchmarking with the state-of-the-art method.","PeriodicalId":254686,"journal":{"name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contextual Anomaly Detection in Spatio-Temporal Data Using Locally Dense Regions\",\"authors\":\"G. Anand, R. Nayak\",\"doi\":\"10.1109/ICTAI.2018.00149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancements in computing and location-acquisition technologies, large volumes of spatio-temporal tra-jectory data are being generated and stored. Anomaly detection in trajectory data is significant for several applications. Using a data-driven spatio-temporal context in the form of geographical sub-regions and different time-periods can enhance the relevance of detected anomalies. We propose a novel scalable contextual anomaly detection method for trajectory data using the regional density information. The effectiveness and scalability of the proposed method is shown through the empirical analysis and benchmarking with the state-of-the-art method.\",\"PeriodicalId\":254686,\"journal\":{\"name\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2018.00149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2018.00149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着计算和位置获取技术的进步,大量的时空轨迹数据正在生成和存储。轨迹数据异常检测在许多应用中都具有重要意义。以地理子区域和不同时间段的形式使用数据驱动的时空背景可以增强检测到的异常的相关性。提出了一种基于区域密度信息的可扩展轨迹数据上下文异常检测方法。通过实证分析和对标分析,验证了该方法的有效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contextual Anomaly Detection in Spatio-Temporal Data Using Locally Dense Regions
With the advancements in computing and location-acquisition technologies, large volumes of spatio-temporal tra-jectory data are being generated and stored. Anomaly detection in trajectory data is significant for several applications. Using a data-driven spatio-temporal context in the form of geographical sub-regions and different time-periods can enhance the relevance of detected anomalies. We propose a novel scalable contextual anomaly detection method for trajectory data using the regional density information. The effectiveness and scalability of the proposed method is shown through the empirical analysis and benchmarking with the state-of-the-art method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信