基于全局分层对象图的影响分析

Marwan Abi-Antoun, Yibin Wang, E. Khalaj, Andrew Giang, V. Rajlich
{"title":"基于全局分层对象图的影响分析","authors":"Marwan Abi-Antoun, Yibin Wang, E. Khalaj, Andrew Giang, V. Rajlich","doi":"10.1109/SANER.2015.7081832","DOIUrl":null,"url":null,"abstract":"During impact analysis on object-oriented code, statically extracting dependencies is often complicated by subclassing, programming to interfaces, aliasing, and collections, among others. When a tool recommends a large number of types or does not rank its recommendations, it may lead developers to explore more irrelevant code. We propose to mine and rank dependencies based on a global, hierarchical points-to graph that is extracted using abstract interpretation. A previous whole-program static analysis interprets a program enriched with annotations that express hierarchy, and over-approximates all the objects that may be created at runtime and how they may communicate. In this paper, an analysis mines the hierarchy and the edges in the graph to extract and rank dependencies such as the most important classes related to a class, or the most important classes behind an interface. An evaluation using two case studies on two systems totaling 10,000 lines of code and five completed code modification tasks shows that following dependencies based on abstract interpretation achieves higher effectiveness compared to following dependencies extracted from the abstract syntax tree. As a result, developers explore less irrelevant code.","PeriodicalId":355949,"journal":{"name":"2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Impact analysis based on a global hierarchical Object Graph\",\"authors\":\"Marwan Abi-Antoun, Yibin Wang, E. Khalaj, Andrew Giang, V. Rajlich\",\"doi\":\"10.1109/SANER.2015.7081832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During impact analysis on object-oriented code, statically extracting dependencies is often complicated by subclassing, programming to interfaces, aliasing, and collections, among others. When a tool recommends a large number of types or does not rank its recommendations, it may lead developers to explore more irrelevant code. We propose to mine and rank dependencies based on a global, hierarchical points-to graph that is extracted using abstract interpretation. A previous whole-program static analysis interprets a program enriched with annotations that express hierarchy, and over-approximates all the objects that may be created at runtime and how they may communicate. In this paper, an analysis mines the hierarchy and the edges in the graph to extract and rank dependencies such as the most important classes related to a class, or the most important classes behind an interface. An evaluation using two case studies on two systems totaling 10,000 lines of code and five completed code modification tasks shows that following dependencies based on abstract interpretation achieves higher effectiveness compared to following dependencies extracted from the abstract syntax tree. As a result, developers explore less irrelevant code.\",\"PeriodicalId\":355949,\"journal\":{\"name\":\"2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SANER.2015.7081832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2015.7081832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在对面向对象代码进行影响分析期间,静态提取依赖关系通常会因为子类化、接口编程、别名和集合等而变得复杂。当一个工具推荐大量的类型或者没有对其推荐进行排序时,它可能会导致开发人员探索更多不相关的代码。我们建议基于使用抽象解释提取的全局分层点到图来挖掘和排序依赖关系。以前的全程序静态分析解释了一个用表达层次结构的注释丰富的程序,并且过度近似于可能在运行时创建的所有对象以及它们如何通信。在本文中,分析挖掘了图中的层次结构和边缘,以提取和排序依赖关系,例如与类相关的最重要类,或接口背后最重要的类。通过对两个系统的两个案例研究(总共10,000行代码和五个已完成的代码修改任务)进行评估,结果表明,与从抽象语法树中提取的依赖项相比,基于抽象解释的依赖项获得了更高的效率。因此,开发人员可以探索不太相关的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact analysis based on a global hierarchical Object Graph
During impact analysis on object-oriented code, statically extracting dependencies is often complicated by subclassing, programming to interfaces, aliasing, and collections, among others. When a tool recommends a large number of types or does not rank its recommendations, it may lead developers to explore more irrelevant code. We propose to mine and rank dependencies based on a global, hierarchical points-to graph that is extracted using abstract interpretation. A previous whole-program static analysis interprets a program enriched with annotations that express hierarchy, and over-approximates all the objects that may be created at runtime and how they may communicate. In this paper, an analysis mines the hierarchy and the edges in the graph to extract and rank dependencies such as the most important classes related to a class, or the most important classes behind an interface. An evaluation using two case studies on two systems totaling 10,000 lines of code and five completed code modification tasks shows that following dependencies based on abstract interpretation achieves higher effectiveness compared to following dependencies extracted from the abstract syntax tree. As a result, developers explore less irrelevant code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信