时变参数的递推估计最大化算法在多目标跟踪中的应用

L. Frenkel, M. Feder
{"title":"时变参数的递推估计最大化算法在多目标跟踪中的应用","authors":"L. Frenkel, M. Feder","doi":"10.1109/ICASSP.1995.478481","DOIUrl":null,"url":null,"abstract":"We investigate the application of EM algorithm to the classical problem of multiple target tracking (MTT) for a known number of targets. Conventional algorithms, have a computational complexity that depends exponentially on the targets' number, and usually divide the problem into a localization stage and a tracking stage. The new algorithms achieve a linear dependency, and integrate those hire stages. Three major optimization criteria are proposed, using deterministic and stochastic dynamic models for the targets.","PeriodicalId":300119,"journal":{"name":"1995 International Conference on Acoustics, Speech, and Signal Processing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Recursive estimate-maximize (EM) algorithms for time varying parameters with applications to multiple target tracking\",\"authors\":\"L. Frenkel, M. Feder\",\"doi\":\"10.1109/ICASSP.1995.478481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the application of EM algorithm to the classical problem of multiple target tracking (MTT) for a known number of targets. Conventional algorithms, have a computational complexity that depends exponentially on the targets' number, and usually divide the problem into a localization stage and a tracking stage. The new algorithms achieve a linear dependency, and integrate those hire stages. Three major optimization criteria are proposed, using deterministic and stochastic dynamic models for the targets.\",\"PeriodicalId\":300119,\"journal\":{\"name\":\"1995 International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1995 International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1995.478481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1995.478481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

研究了EM算法在已知目标数的经典多目标跟踪问题中的应用。传统算法的计算复杂度与目标数量呈指数关系,通常将问题分为定位阶段和跟踪阶段。新算法实现了线性依赖,并整合了这些租用阶段。利用目标的确定性和随机动态模型,提出了三种主要的优化准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive estimate-maximize (EM) algorithms for time varying parameters with applications to multiple target tracking
We investigate the application of EM algorithm to the classical problem of multiple target tracking (MTT) for a known number of targets. Conventional algorithms, have a computational complexity that depends exponentially on the targets' number, and usually divide the problem into a localization stage and a tracking stage. The new algorithms achieve a linear dependency, and integrate those hire stages. Three major optimization criteria are proposed, using deterministic and stochastic dynamic models for the targets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信