是什么让有限状态模型更(或更少)可测试?

David Owen, T. Menzies, B. Cukic
{"title":"是什么让有限状态模型更(或更少)可测试?","authors":"David Owen, T. Menzies, B. Cukic","doi":"10.1109/ASE.2002.1115019","DOIUrl":null,"url":null,"abstract":"This paper studies how details of a particular model can effect the efficacy of a search for detects. We find that if the test method is fixed, we can identity classes of software that are more or less testable. Using a combination of model mutators and machine learning, we find that we can isolate topological features that significantly change the effectiveness of a defect detection tool. More specifically, we show that for one defect detection tool (a stochastic search engine) applied to a certain representation (finite state machines), we can increase the average odds of finding a defect from 69% to 91%. The method used to change those odds is quite general and should apply to other defect detection tools being applied to other representations.","PeriodicalId":163532,"journal":{"name":"Proceedings 17th IEEE International Conference on Automated Software Engineering,","volume":"12 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"What makes finite-state models more (or less) testable?\",\"authors\":\"David Owen, T. Menzies, B. Cukic\",\"doi\":\"10.1109/ASE.2002.1115019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies how details of a particular model can effect the efficacy of a search for detects. We find that if the test method is fixed, we can identity classes of software that are more or less testable. Using a combination of model mutators and machine learning, we find that we can isolate topological features that significantly change the effectiveness of a defect detection tool. More specifically, we show that for one defect detection tool (a stochastic search engine) applied to a certain representation (finite state machines), we can increase the average odds of finding a defect from 69% to 91%. The method used to change those odds is quite general and should apply to other defect detection tools being applied to other representations.\",\"PeriodicalId\":163532,\"journal\":{\"name\":\"Proceedings 17th IEEE International Conference on Automated Software Engineering,\",\"volume\":\"12 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 17th IEEE International Conference on Automated Software Engineering,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2002.1115019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th IEEE International Conference on Automated Software Engineering,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2002.1115019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了一个特定模型的细节如何影响搜索检测的有效性。我们发现,如果测试方法是固定的,我们可以识别或多或少可测试的软件类别。结合使用模型突变器和机器学习,我们发现我们可以分离出显著改变缺陷检测工具有效性的拓扑特征。更具体地说,我们表明,对于一个缺陷检测工具(一个随机搜索引擎)应用于一个特定的表示(有限状态机),我们可以将发现缺陷的平均几率从69%增加到91%。用于改变这些概率的方法是非常通用的,并且应该应用于应用于其他表示的其他缺陷检测工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What makes finite-state models more (or less) testable?
This paper studies how details of a particular model can effect the efficacy of a search for detects. We find that if the test method is fixed, we can identity classes of software that are more or less testable. Using a combination of model mutators and machine learning, we find that we can isolate topological features that significantly change the effectiveness of a defect detection tool. More specifically, we show that for one defect detection tool (a stochastic search engine) applied to a certain representation (finite state machines), we can increase the average odds of finding a defect from 69% to 91%. The method used to change those odds is quite general and should apply to other defect detection tools being applied to other representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信