{"title":"是什么让有限状态模型更(或更少)可测试?","authors":"David Owen, T. Menzies, B. Cukic","doi":"10.1109/ASE.2002.1115019","DOIUrl":null,"url":null,"abstract":"This paper studies how details of a particular model can effect the efficacy of a search for detects. We find that if the test method is fixed, we can identity classes of software that are more or less testable. Using a combination of model mutators and machine learning, we find that we can isolate topological features that significantly change the effectiveness of a defect detection tool. More specifically, we show that for one defect detection tool (a stochastic search engine) applied to a certain representation (finite state machines), we can increase the average odds of finding a defect from 69% to 91%. The method used to change those odds is quite general and should apply to other defect detection tools being applied to other representations.","PeriodicalId":163532,"journal":{"name":"Proceedings 17th IEEE International Conference on Automated Software Engineering,","volume":"12 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"What makes finite-state models more (or less) testable?\",\"authors\":\"David Owen, T. Menzies, B. Cukic\",\"doi\":\"10.1109/ASE.2002.1115019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies how details of a particular model can effect the efficacy of a search for detects. We find that if the test method is fixed, we can identity classes of software that are more or less testable. Using a combination of model mutators and machine learning, we find that we can isolate topological features that significantly change the effectiveness of a defect detection tool. More specifically, we show that for one defect detection tool (a stochastic search engine) applied to a certain representation (finite state machines), we can increase the average odds of finding a defect from 69% to 91%. The method used to change those odds is quite general and should apply to other defect detection tools being applied to other representations.\",\"PeriodicalId\":163532,\"journal\":{\"name\":\"Proceedings 17th IEEE International Conference on Automated Software Engineering,\",\"volume\":\"12 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 17th IEEE International Conference on Automated Software Engineering,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2002.1115019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th IEEE International Conference on Automated Software Engineering,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2002.1115019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
What makes finite-state models more (or less) testable?
This paper studies how details of a particular model can effect the efficacy of a search for detects. We find that if the test method is fixed, we can identity classes of software that are more or less testable. Using a combination of model mutators and machine learning, we find that we can isolate topological features that significantly change the effectiveness of a defect detection tool. More specifically, we show that for one defect detection tool (a stochastic search engine) applied to a certain representation (finite state machines), we can increase the average odds of finding a defect from 69% to 91%. The method used to change those odds is quite general and should apply to other defect detection tools being applied to other representations.