相关矩阵稀疏逼近的对偶活动集近端牛顿算法

X. Liu, Chungen Shen, Li Wang
{"title":"相关矩阵稀疏逼近的对偶活动集近端牛顿算法","authors":"X. Liu, Chungen Shen, Li Wang","doi":"10.1080/10556788.2021.1998491","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel dual active-set algorithm that is based on proximal gradient and semi-smooth Newton iterations for the sparse approximation of correlation matrices in the Frobenius norm. A new dual formulation with upper and lower bounds is derived. To solve the dual, the proximal gradient method is developed to guarantee global convergence. Also, it provides information to estimate active/inactive constraints. Then, the semi-smooth Newton method is applied to accelerate the convergence of the proximal gradient method, which is the key ingredient of our algorithm. It is shown that the proposed algorithm for the dual is globally convergent under certain conditions. Some preliminary numerical results are given to illustrate the effectiveness of our algorithm on synthetic and real data sets.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dual active-set proximal Newton algorithm for sparse approximation of correlation matrices\",\"authors\":\"X. Liu, Chungen Shen, Li Wang\",\"doi\":\"10.1080/10556788.2021.1998491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel dual active-set algorithm that is based on proximal gradient and semi-smooth Newton iterations for the sparse approximation of correlation matrices in the Frobenius norm. A new dual formulation with upper and lower bounds is derived. To solve the dual, the proximal gradient method is developed to guarantee global convergence. Also, it provides information to estimate active/inactive constraints. Then, the semi-smooth Newton method is applied to accelerate the convergence of the proximal gradient method, which is the key ingredient of our algorithm. It is shown that the proposed algorithm for the dual is globally convergent under certain conditions. Some preliminary numerical results are given to illustrate the effectiveness of our algorithm on synthetic and real data sets.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2021.1998491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2021.1998491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的基于近端梯度和半光滑牛顿迭代的对偶活动集算法,用于Frobenius范数中相关矩阵的稀疏逼近。导出了一个新的有上界和下界的对偶公式。为了解决对偶问题,提出了保证全局收敛的近端梯度法。此外,它还提供了评估活动/非活动约束的信息。然后,利用半光滑牛顿法加快了算法的收敛速度,这是算法的关键。结果表明,该算法在一定条件下是全局收敛的。给出了一些初步的数值结果,说明了该算法在合成数据集和实际数据集上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dual active-set proximal Newton algorithm for sparse approximation of correlation matrices
In this paper, we propose a novel dual active-set algorithm that is based on proximal gradient and semi-smooth Newton iterations for the sparse approximation of correlation matrices in the Frobenius norm. A new dual formulation with upper and lower bounds is derived. To solve the dual, the proximal gradient method is developed to guarantee global convergence. Also, it provides information to estimate active/inactive constraints. Then, the semi-smooth Newton method is applied to accelerate the convergence of the proximal gradient method, which is the key ingredient of our algorithm. It is shown that the proposed algorithm for the dual is globally convergent under certain conditions. Some preliminary numerical results are given to illustrate the effectiveness of our algorithm on synthetic and real data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信