熊猫中的服务器定向的集体I/O

K. Seamons, Ying Chen, P. Jones, J. Jozwiak, M. Winslett
{"title":"熊猫中的服务器定向的集体I/O","authors":"K. Seamons, Ying Chen, P. Jones, J. Jozwiak, M. Winslett","doi":"10.1145/224170.224371","DOIUrl":null,"url":null,"abstract":"We present the architecture and implementation results for Panda 2.0, a library for input and output of multidimensional arrays on parallel and sequential platforms. Panda achieves remarkable performance levels on the IBM SP2, showing excellent scalability as data size increases and as the number of nodes increases, and provides throughputs close to the full capacity of the AIX file system on the SP2 we used. We argue that this good performance can be traced to Panda's use of server-directed i/o (a logical-level version of disk-directed i/o [Kotz94b]) to perform array i/o using sequential disk reads and writes, a very high level interface for collective i/o requests, and built-in facilities for arbitrary rearrangements of arrays during i/o. Other advantages of Panda's approach are ease of use, easy application portability, and a reliance on commodity system software.","PeriodicalId":269909,"journal":{"name":"Proceedings of the IEEE/ACM SC95 Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"247","resultStr":"{\"title\":\"Server-Directed Collective I/O in Panda\",\"authors\":\"K. Seamons, Ying Chen, P. Jones, J. Jozwiak, M. Winslett\",\"doi\":\"10.1145/224170.224371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the architecture and implementation results for Panda 2.0, a library for input and output of multidimensional arrays on parallel and sequential platforms. Panda achieves remarkable performance levels on the IBM SP2, showing excellent scalability as data size increases and as the number of nodes increases, and provides throughputs close to the full capacity of the AIX file system on the SP2 we used. We argue that this good performance can be traced to Panda's use of server-directed i/o (a logical-level version of disk-directed i/o [Kotz94b]) to perform array i/o using sequential disk reads and writes, a very high level interface for collective i/o requests, and built-in facilities for arbitrary rearrangements of arrays during i/o. Other advantages of Panda's approach are ease of use, easy application portability, and a reliance on commodity system software.\",\"PeriodicalId\":269909,\"journal\":{\"name\":\"Proceedings of the IEEE/ACM SC95 Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"247\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE/ACM SC95 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/224170.224371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM SC95 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/224170.224371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 247

摘要

本文介绍了Panda 2.0的体系结构和实现结果,Panda 2.0是一个用于并行和顺序平台上多维数组输入和输出的库。Panda在IBM SP2上实现了卓越的性能水平,随着数据大小的增加和节点数量的增加显示出出色的可伸缩性,并提供接近我们使用的SP2上AIX文件系统的全部容量的吞吐量。我们认为,这种良好的性能可以追溯到Panda使用服务器定向i/o(磁盘定向i/o的逻辑级版本[Kotz94b])来执行数组i/o,使用顺序磁盘读写,一个非常高级的集合i/o请求接口,以及在i/o期间任意重新排列数组的内置设施。Panda方法的其他优点是易于使用、易于应用程序可移植性和对商品系统软件的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Server-Directed Collective I/O in Panda
We present the architecture and implementation results for Panda 2.0, a library for input and output of multidimensional arrays on parallel and sequential platforms. Panda achieves remarkable performance levels on the IBM SP2, showing excellent scalability as data size increases and as the number of nodes increases, and provides throughputs close to the full capacity of the AIX file system on the SP2 we used. We argue that this good performance can be traced to Panda's use of server-directed i/o (a logical-level version of disk-directed i/o [Kotz94b]) to perform array i/o using sequential disk reads and writes, a very high level interface for collective i/o requests, and built-in facilities for arbitrary rearrangements of arrays during i/o. Other advantages of Panda's approach are ease of use, easy application portability, and a reliance on commodity system software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信