基于概率的微阵列数据最信息基因选择

Sunanda Das, A. Das
{"title":"基于概率的微阵列数据最信息基因选择","authors":"Sunanda Das, A. Das","doi":"10.4018/IJRSDA.2018010101","DOIUrl":null,"url":null,"abstract":"Microarraydatasetshaveawideapplication inbioinformatics research.Analysis tomeasure the expressionlevelofthousandsofgenesofthiskindofhigh-throughputdatacanhelpforfindingthe causeandsubsequenttreatmentofanydisease.Therearemanytechniquesingeneanalysistoextract biologicallyrelevantinformationfrominconsistentandambiguousdata.Inthispaper,theconceptsof functionaldependencyandclosureofanattributeofdatabasetechnologyareusedforfindingthemost importantsetofgenesforcancerdetection.Firstly,themethodcomputessimilarityfactorbetween eachpairofgenes.Basedonthesimilarityfactorsasetofgenedependencyisformedfromwhich closuresetisobtained.Subsequently,conditionalprobabilitybasedinterestingnessmeasurementsare usedtodeterminethemostinformativegenefordiseaseclassification.Theproposedmethodisapplied onsomepubliclyavailablecancerousgeneexpressiondataset.Theresultshowstheeffectiveness androbustnessofthealgorithm. KeywoRDS Important Gene Set, Most Informative Gene Selection, Probability Factor, Similarity Based Gene Dependency","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Probability Based Most Informative Gene Selection From Microarray Data\",\"authors\":\"Sunanda Das, A. Das\",\"doi\":\"10.4018/IJRSDA.2018010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarraydatasetshaveawideapplication inbioinformatics research.Analysis tomeasure the expressionlevelofthousandsofgenesofthiskindofhigh-throughputdatacanhelpforfindingthe causeandsubsequenttreatmentofanydisease.Therearemanytechniquesingeneanalysistoextract biologicallyrelevantinformationfrominconsistentandambiguousdata.Inthispaper,theconceptsof functionaldependencyandclosureofanattributeofdatabasetechnologyareusedforfindingthemost importantsetofgenesforcancerdetection.Firstly,themethodcomputessimilarityfactorbetween eachpairofgenes.Basedonthesimilarityfactorsasetofgenedependencyisformedfromwhich closuresetisobtained.Subsequently,conditionalprobabilitybasedinterestingnessmeasurementsare usedtodeterminethemostinformativegenefordiseaseclassification.Theproposedmethodisapplied onsomepubliclyavailablecancerousgeneexpressiondataset.Theresultshowstheeffectiveness androbustnessofthealgorithm. KeywoRDS Important Gene Set, Most Informative Gene Selection, Probability Factor, Similarity Based Gene Dependency\",\"PeriodicalId\":152357,\"journal\":{\"name\":\"Int. J. Rough Sets Data Anal.\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Rough Sets Data Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJRSDA.2018010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2018010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

Microarraydatasetshaveawideapplication inbioinformatics研究。Analysis tomeasure theexpressionlevelofthousandsofgenesofthiskindofhigh-throughputdatacanhelpforfindingthe causeandsubsequenttreatmentofanydisease。Therearemanytechniquesingeneanalysistoextract biologicallyrelevantinformationfrominconsistentandambiguousdata。Inthispaper,theconceptsof functionaldependencyandclosureofanattributeofdatabasetechnologyareusedforfindingthemost importantsetofgenesforcancerdetection。Firstly,themethodcomputessimilarityfactorbetween eachpairofgenes。Basedonthesimilarityfactorsasetofgenedependencyisformedfromwhich closuresetisobtained。Subsequently,conditionalprobabilitybasedinterestingnessmeasurementsare usedtodeterminethemostinformativegenefordiseaseclassification。Theproposedmethodisapplied onsomepubliclyavailablecancerousgeneexpressiondataset。Theresultshowstheeffectiveness androbustnessofthealgorithm。关键词:重要基因集,最信息基因选择,概率因子,相似性基因依赖
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probability Based Most Informative Gene Selection From Microarray Data
Microarraydatasetshaveawideapplication inbioinformatics research.Analysis tomeasure the expressionlevelofthousandsofgenesofthiskindofhigh-throughputdatacanhelpforfindingthe causeandsubsequenttreatmentofanydisease.Therearemanytechniquesingeneanalysistoextract biologicallyrelevantinformationfrominconsistentandambiguousdata.Inthispaper,theconceptsof functionaldependencyandclosureofanattributeofdatabasetechnologyareusedforfindingthemost importantsetofgenesforcancerdetection.Firstly,themethodcomputessimilarityfactorbetween eachpairofgenes.Basedonthesimilarityfactorsasetofgenedependencyisformedfromwhich closuresetisobtained.Subsequently,conditionalprobabilitybasedinterestingnessmeasurementsare usedtodeterminethemostinformativegenefordiseaseclassification.Theproposedmethodisapplied onsomepubliclyavailablecancerousgeneexpressiondataset.Theresultshowstheeffectiveness androbustnessofthealgorithm. KeywoRDS Important Gene Set, Most Informative Gene Selection, Probability Factor, Similarity Based Gene Dependency
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信