{"title":"基于概率的微阵列数据最信息基因选择","authors":"Sunanda Das, A. Das","doi":"10.4018/IJRSDA.2018010101","DOIUrl":null,"url":null,"abstract":"Microarraydatasetshaveawideapplication inbioinformatics research.Analysis tomeasure the expressionlevelofthousandsofgenesofthiskindofhigh-throughputdatacanhelpforfindingthe causeandsubsequenttreatmentofanydisease.Therearemanytechniquesingeneanalysistoextract biologicallyrelevantinformationfrominconsistentandambiguousdata.Inthispaper,theconceptsof functionaldependencyandclosureofanattributeofdatabasetechnologyareusedforfindingthemost importantsetofgenesforcancerdetection.Firstly,themethodcomputessimilarityfactorbetween eachpairofgenes.Basedonthesimilarityfactorsasetofgenedependencyisformedfromwhich closuresetisobtained.Subsequently,conditionalprobabilitybasedinterestingnessmeasurementsare usedtodeterminethemostinformativegenefordiseaseclassification.Theproposedmethodisapplied onsomepubliclyavailablecancerousgeneexpressiondataset.Theresultshowstheeffectiveness androbustnessofthealgorithm. KeywoRDS Important Gene Set, Most Informative Gene Selection, Probability Factor, Similarity Based Gene Dependency","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Probability Based Most Informative Gene Selection From Microarray Data\",\"authors\":\"Sunanda Das, A. Das\",\"doi\":\"10.4018/IJRSDA.2018010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarraydatasetshaveawideapplication inbioinformatics research.Analysis tomeasure the expressionlevelofthousandsofgenesofthiskindofhigh-throughputdatacanhelpforfindingthe causeandsubsequenttreatmentofanydisease.Therearemanytechniquesingeneanalysistoextract biologicallyrelevantinformationfrominconsistentandambiguousdata.Inthispaper,theconceptsof functionaldependencyandclosureofanattributeofdatabasetechnologyareusedforfindingthemost importantsetofgenesforcancerdetection.Firstly,themethodcomputessimilarityfactorbetween eachpairofgenes.Basedonthesimilarityfactorsasetofgenedependencyisformedfromwhich closuresetisobtained.Subsequently,conditionalprobabilitybasedinterestingnessmeasurementsare usedtodeterminethemostinformativegenefordiseaseclassification.Theproposedmethodisapplied onsomepubliclyavailablecancerousgeneexpressiondataset.Theresultshowstheeffectiveness androbustnessofthealgorithm. KeywoRDS Important Gene Set, Most Informative Gene Selection, Probability Factor, Similarity Based Gene Dependency\",\"PeriodicalId\":152357,\"journal\":{\"name\":\"Int. J. Rough Sets Data Anal.\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Rough Sets Data Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJRSDA.2018010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2018010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}