使用强化学习的游戏玩法

Dilip Kumar, Ritesh Prasad, Kumar Ritu Raj Singh, Surbhi Singh
{"title":"使用强化学习的游戏玩法","authors":"Dilip Kumar, Ritesh Prasad, Kumar Ritu Raj Singh, Surbhi Singh","doi":"10.1109/DEVIC.2019.8783550","DOIUrl":null,"url":null,"abstract":"In this article we present a study of different Reinforcement Learning algorithms and how these algorithms can be used to train agents which can achieve human level performance in different games and control tasks.","PeriodicalId":294095,"journal":{"name":"2019 Devices for Integrated Circuit (DevIC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gameplay using Reinforcement Learning\",\"authors\":\"Dilip Kumar, Ritesh Prasad, Kumar Ritu Raj Singh, Surbhi Singh\",\"doi\":\"10.1109/DEVIC.2019.8783550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we present a study of different Reinforcement Learning algorithms and how these algorithms can be used to train agents which can achieve human level performance in different games and control tasks.\",\"PeriodicalId\":294095,\"journal\":{\"name\":\"2019 Devices for Integrated Circuit (DevIC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Devices for Integrated Circuit (DevIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVIC.2019.8783550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Devices for Integrated Circuit (DevIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVIC.2019.8783550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了不同的强化学习算法的研究,以及如何使用这些算法来训练代理,这些代理可以在不同的游戏和控制任务中达到人类水平的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gameplay using Reinforcement Learning
In this article we present a study of different Reinforcement Learning algorithms and how these algorithms can be used to train agents which can achieve human level performance in different games and control tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信