基于非刚性CPD配准方法的三维面部表情识别

Imen Hamrouni Trimech, A. Maalej, Najoua Essoukri Ben Amara
{"title":"基于非刚性CPD配准方法的三维面部表情识别","authors":"Imen Hamrouni Trimech, A. Maalej, Najoua Essoukri Ben Amara","doi":"10.1109/SETIT.2016.7939917","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel approach for 3D facial expression recognition based on a registration method. The used registration method, called the Coherent Point Drift (CPD), is applied to estimate complex non-linear and nonrigid transformation between 3D facial surfaces. The computed transformation allows to recover shape deformations that are induced by facial expression variations. Machine learning is applied using Dimensionality reduction methods in order to promote the computational efficiency and Support Vector Machine (SVM) for classification. The obtained experimental results show that our method achieves promising recognition rates on Bhosphorus database.","PeriodicalId":426951,"journal":{"name":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"3D facial expression recognition using nonrigid CPD registration method\",\"authors\":\"Imen Hamrouni Trimech, A. Maalej, Najoua Essoukri Ben Amara\",\"doi\":\"10.1109/SETIT.2016.7939917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a novel approach for 3D facial expression recognition based on a registration method. The used registration method, called the Coherent Point Drift (CPD), is applied to estimate complex non-linear and nonrigid transformation between 3D facial surfaces. The computed transformation allows to recover shape deformations that are induced by facial expression variations. Machine learning is applied using Dimensionality reduction methods in order to promote the computational efficiency and Support Vector Machine (SVM) for classification. The obtained experimental results show that our method achieves promising recognition rates on Bhosphorus database.\",\"PeriodicalId\":426951,\"journal\":{\"name\":\"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SETIT.2016.7939917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SETIT.2016.7939917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于配准方法的三维面部表情识别方法。所使用的配准方法称为相干点漂移(CPD),用于估计三维曲面之间复杂的非线性和非刚性变换。计算的变换允许恢复由面部表情变化引起的形状变形。为了提高计算效率和支持向量机(SVM)分类,采用降维方法进行机器学习。实验结果表明,该方法在Bhosphorus数据库上取得了良好的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D facial expression recognition using nonrigid CPD registration method
In this paper we present a novel approach for 3D facial expression recognition based on a registration method. The used registration method, called the Coherent Point Drift (CPD), is applied to estimate complex non-linear and nonrigid transformation between 3D facial surfaces. The computed transformation allows to recover shape deformations that are induced by facial expression variations. Machine learning is applied using Dimensionality reduction methods in order to promote the computational efficiency and Support Vector Machine (SVM) for classification. The obtained experimental results show that our method achieves promising recognition rates on Bhosphorus database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信