2.2电子

K. Schwarz
{"title":"2.2电子","authors":"K. Schwarz","doi":"10.1107/97809553602060000912","DOIUrl":null,"url":null,"abstract":"The electronic structure of a solid, characterized by its energy band structure, is the fundamental quantity that determines the ground state of the solid and a series of excitations involving electronic states. In the first part of this chapter, several basic concepts are summarized in order to establish the notation used and to repeat essential theorems from group theory and solid-state physics that provide the definitions that are needed in this context (Brillouin zones, symmetry operators, Bloch theorem, space-group symmetry). Next the quantum-mechanical treatment, especially density functional theory, is described and the commonly used methods of band theory are outlined (the linear combination of atomic orbitals, tight binding, pseudo-potential schemes, the augmented plane wave method, the linear augmented plane wave method, the Korringa–Kohn–Rostocker method, the linear combination of muffin-tin orbitals, the Car–Parinello method etc.). The linear augmented plane wave scheme is presented explicitly so that concepts in connection with energy bands can be explained. The electric field gradient is discussed to illustrate a tensorial quantity. In the last section, a few examples illustrate the topics of the chapter. \n \n \nKeywords: \n \nBloch function; \nBloch states; \nBloch theorem; \nBravais lattices; \nBrillouin zone; \nCar–Parrinello method; \nKorringa–Kohn–Rostocker method; \nSeitz operator; \nSommerfeld model; \natomic orbitals; \naugmented plane wave method; \nband structure; \nchemical bonding; \ncore electrons; \ncrystal harmonics; \ndensity functional theory; \ndensity of states; \nelectric field gradient; \nenergy bands; \nexchange–correlation; \nfree-electron model; \nfull-potential methods; \nitinerant electrons; \nlinear combination of atomic orbitals; \nlinear combination of muffin-tin orbitals; \nlinearized augmented plane wave method; \nlocal coordinate system; \nlocalized electrons; \nmuffin-tin approximation; \nnuclear quadrupole moment; \npartial charges; \nperiodic boundary conditions; \npseudo-potential; \nquantum-mechanical treatment; \nreciprocal lattice; \nrelativistic effects; \nrepresentations; \nsemi-core states; \nsmall representations; \ntight binding","PeriodicalId":338076,"journal":{"name":"International Tables for Crystallography","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2.2 Electrons\",\"authors\":\"K. Schwarz\",\"doi\":\"10.1107/97809553602060000912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electronic structure of a solid, characterized by its energy band structure, is the fundamental quantity that determines the ground state of the solid and a series of excitations involving electronic states. In the first part of this chapter, several basic concepts are summarized in order to establish the notation used and to repeat essential theorems from group theory and solid-state physics that provide the definitions that are needed in this context (Brillouin zones, symmetry operators, Bloch theorem, space-group symmetry). Next the quantum-mechanical treatment, especially density functional theory, is described and the commonly used methods of band theory are outlined (the linear combination of atomic orbitals, tight binding, pseudo-potential schemes, the augmented plane wave method, the linear augmented plane wave method, the Korringa–Kohn–Rostocker method, the linear combination of muffin-tin orbitals, the Car–Parinello method etc.). The linear augmented plane wave scheme is presented explicitly so that concepts in connection with energy bands can be explained. The electric field gradient is discussed to illustrate a tensorial quantity. In the last section, a few examples illustrate the topics of the chapter. \\n \\n \\nKeywords: \\n \\nBloch function; \\nBloch states; \\nBloch theorem; \\nBravais lattices; \\nBrillouin zone; \\nCar–Parrinello method; \\nKorringa–Kohn–Rostocker method; \\nSeitz operator; \\nSommerfeld model; \\natomic orbitals; \\naugmented plane wave method; \\nband structure; \\nchemical bonding; \\ncore electrons; \\ncrystal harmonics; \\ndensity functional theory; \\ndensity of states; \\nelectric field gradient; \\nenergy bands; \\nexchange–correlation; \\nfree-electron model; \\nfull-potential methods; \\nitinerant electrons; \\nlinear combination of atomic orbitals; \\nlinear combination of muffin-tin orbitals; \\nlinearized augmented plane wave method; \\nlocal coordinate system; \\nlocalized electrons; \\nmuffin-tin approximation; \\nnuclear quadrupole moment; \\npartial charges; \\nperiodic boundary conditions; \\npseudo-potential; \\nquantum-mechanical treatment; \\nreciprocal lattice; \\nrelativistic effects; \\nrepresentations; \\nsemi-core states; \\nsmall representations; \\ntight binding\",\"PeriodicalId\":338076,\"journal\":{\"name\":\"International Tables for Crystallography\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Tables for Crystallography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1107/97809553602060000912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Tables for Crystallography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/97809553602060000912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

固体的电子结构以能带结构为特征,是决定固体基态和涉及电子态的一系列激发的基本量。在本章的第一部分,总结了几个基本概念,以便建立所使用的符号,并重复群论和固态物理中的基本定理,这些定理提供了在此背景下所需的定义(布里渊带,对称算子,布洛赫定理,空间群对称)。其次,描述了量子力学的处理方法,特别是密度泛函理论,并概述了常用的带理论方法(原子轨道的线性组合、紧密结合、伪势格式、增广平面波方法、线性增广平面波方法、Korringa-Kohn-Rostocker方法、松饼轨道的线性组合、Car-Parinello方法等)。明确地提出了线性增广平面波格式,以便解释与能带有关的概念。讨论电场梯度来说明张量。在最后一节中,有几个例子说明了本章的主题。关键词:Bloch函数;布洛赫状态;布洛赫定理;布拉维晶格;布里渊区;Car-Parrinello方法;Korringa-Kohn-Rostocker方法;塞茨算子;索姆费尔德模型;原子轨道;增广平面波法;能带结构;化学成键;核心电子;水晶谐波;密度泛函理论;态密度;电场梯度;能源乐队;exchange-correlation;自由电子模型;全部潜力方法;流动的电子;原子轨道的线性组合;松饼锡轨道的线性组合;线性增广平面波法;局部坐标系;本地化的电子;松饼模子近似;核四极矩;部分费用;周期边界条件;伪势;量子力学的治疗;互惠晶格;相对论效应;表示;semi-core状态;小表示;紧密结合
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2.2 Electrons
The electronic structure of a solid, characterized by its energy band structure, is the fundamental quantity that determines the ground state of the solid and a series of excitations involving electronic states. In the first part of this chapter, several basic concepts are summarized in order to establish the notation used and to repeat essential theorems from group theory and solid-state physics that provide the definitions that are needed in this context (Brillouin zones, symmetry operators, Bloch theorem, space-group symmetry). Next the quantum-mechanical treatment, especially density functional theory, is described and the commonly used methods of band theory are outlined (the linear combination of atomic orbitals, tight binding, pseudo-potential schemes, the augmented plane wave method, the linear augmented plane wave method, the Korringa–Kohn–Rostocker method, the linear combination of muffin-tin orbitals, the Car–Parinello method etc.). The linear augmented plane wave scheme is presented explicitly so that concepts in connection with energy bands can be explained. The electric field gradient is discussed to illustrate a tensorial quantity. In the last section, a few examples illustrate the topics of the chapter. Keywords: Bloch function; Bloch states; Bloch theorem; Bravais lattices; Brillouin zone; Car–Parrinello method; Korringa–Kohn–Rostocker method; Seitz operator; Sommerfeld model; atomic orbitals; augmented plane wave method; band structure; chemical bonding; core electrons; crystal harmonics; density functional theory; density of states; electric field gradient; energy bands; exchange–correlation; free-electron model; full-potential methods; itinerant electrons; linear combination of atomic orbitals; linear combination of muffin-tin orbitals; linearized augmented plane wave method; local coordinate system; localized electrons; muffin-tin approximation; nuclear quadrupole moment; partial charges; periodic boundary conditions; pseudo-potential; quantum-mechanical treatment; reciprocal lattice; relativistic effects; representations; semi-core states; small representations; tight binding
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信