模块化神经网络的一种降维方法

E. Verissimo, Diogo da Silva Severo, George D. C. Cavalcanti, Ing Ren Tsang
{"title":"模块化神经网络的一种降维方法","authors":"E. Verissimo, Diogo da Silva Severo, George D. C. Cavalcanti, Ing Ren Tsang","doi":"10.1109/ICTAI.2012.166","DOIUrl":null,"url":null,"abstract":"A modular neural network architecture is composed by independent neural networks that focus on different parts of the whole task. This work proposes the Intrinsic Modular Neural Networks that aims not only to reduce the number of classes and patterns in each independent neural network, but also to reduce the dimensionality of the data. The task decomposition is performed by the High-Dimensional Data Clustering algorithm. After the clustering, the training patterns are divided in groups and each group is used to train an independent neural network. Experiments on public databases show promising results.","PeriodicalId":155588,"journal":{"name":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Dimensionality Reduction Approach for Modular Neural Networks\",\"authors\":\"E. Verissimo, Diogo da Silva Severo, George D. C. Cavalcanti, Ing Ren Tsang\",\"doi\":\"10.1109/ICTAI.2012.166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A modular neural network architecture is composed by independent neural networks that focus on different parts of the whole task. This work proposes the Intrinsic Modular Neural Networks that aims not only to reduce the number of classes and patterns in each independent neural network, but also to reduce the dimensionality of the data. The task decomposition is performed by the High-Dimensional Data Clustering algorithm. After the clustering, the training patterns are divided in groups and each group is used to train an independent neural network. Experiments on public databases show promising results.\",\"PeriodicalId\":155588,\"journal\":{\"name\":\"2012 IEEE 24th International Conference on Tools with Artificial Intelligence\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 24th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2012.166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 24th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2012.166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

模块化的神经网络架构是由独立的神经网络组成的,这些神经网络专注于整个任务的不同部分。本研究提出的内在模块化神经网络不仅旨在减少每个独立神经网络中的类和模式的数量,而且还旨在降低数据的维数。采用高维数据聚类算法进行任务分解。聚类后,训练模式被分成组,每组用来训练一个独立的神经网络。在公共数据库上的实验显示了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dimensionality Reduction Approach for Modular Neural Networks
A modular neural network architecture is composed by independent neural networks that focus on different parts of the whole task. This work proposes the Intrinsic Modular Neural Networks that aims not only to reduce the number of classes and patterns in each independent neural network, but also to reduce the dimensionality of the data. The task decomposition is performed by the High-Dimensional Data Clustering algorithm. After the clustering, the training patterns are divided in groups and each group is used to train an independent neural network. Experiments on public databases show promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信