一种蒙特卡罗研究遗传算法的初始种群生成方法

R. Hill
{"title":"一种蒙特卡罗研究遗传算法的初始种群生成方法","authors":"R. Hill","doi":"10.1145/324138.324430","DOIUrl":null,"url":null,"abstract":"Briefly describes genetic algorithms (GAs) and focuses attention on initial population generation methods for 2D knapsack problems. Based on work describing the probability that a random solution vector is feasible for 0-1 knapsack problems, we propose a simple heuristic for randomly generating good initial populations for GA applications to 2D knapsack problems. We report on an experiment comparing a current population generation technique with our proposed approach and find our proposed approach does a very good job of generating good initial populations.","PeriodicalId":287132,"journal":{"name":"Online World Conference on Soft Computing in Industrial Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"A Monte-Carlo study of genetic algorithm initial population generation methods\",\"authors\":\"R. Hill\",\"doi\":\"10.1145/324138.324430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Briefly describes genetic algorithms (GAs) and focuses attention on initial population generation methods for 2D knapsack problems. Based on work describing the probability that a random solution vector is feasible for 0-1 knapsack problems, we propose a simple heuristic for randomly generating good initial populations for GA applications to 2D knapsack problems. We report on an experiment comparing a current population generation technique with our proposed approach and find our proposed approach does a very good job of generating good initial populations.\",\"PeriodicalId\":287132,\"journal\":{\"name\":\"Online World Conference on Soft Computing in Industrial Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Online World Conference on Soft Computing in Industrial Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/324138.324430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online World Conference on Soft Computing in Industrial Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/324138.324430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

简要介绍了遗传算法(GAs),重点介绍了二维背包问题的初始种群生成方法。在描述0-1个背包问题随机解向量可行概率的基础上,我们提出了一种简单的启发式方法,用于随机生成良好的初始种群,用于遗传算法应用于二维背包问题。我们报告了一个实验,将当前的种群生成技术与我们提出的方法进行比较,发现我们提出的方法在生成良好的初始种群方面做得很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Monte-Carlo study of genetic algorithm initial population generation methods
Briefly describes genetic algorithms (GAs) and focuses attention on initial population generation methods for 2D knapsack problems. Based on work describing the probability that a random solution vector is feasible for 0-1 knapsack problems, we propose a simple heuristic for randomly generating good initial populations for GA applications to 2D knapsack problems. We report on an experiment comparing a current population generation technique with our proposed approach and find our proposed approach does a very good job of generating good initial populations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信