基于卡方特征选择和集成学习方法的Android恶意软件检测

Meghna Dhalaria, Ekta Gandotra
{"title":"基于卡方特征选择和集成学习方法的Android恶意软件检测","authors":"Meghna Dhalaria, Ekta Gandotra","doi":"10.1109/PDGC50313.2020.9315818","DOIUrl":null,"url":null,"abstract":"The wide use of mobile phones has become a significant driving force behind a severe increase in malware attacks. These malware applications are hidden in the normal applications which make their classification and detection challenging. The existing techniques are based on signature based approach and are unable to detect unknown malware. In this paper, we propose a technique based on static and dynamic features for the detection of Android malware. We applied a chi-square feature selection algorithm to choose the appropriate features that contribute for detecting malware. After that, we stacked the different base classifiers to improve the detection rate. Furthermore, we compared the proposed method with existing well known machine learning classifiers. The experimental results demonstrate that the proposed technique (K-NN_ RF) achieves better detection accuracy i.e. 98.02%.","PeriodicalId":347216,"journal":{"name":"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Android Malware Detection using Chi-Square Feature Selection and Ensemble Learning Method\",\"authors\":\"Meghna Dhalaria, Ekta Gandotra\",\"doi\":\"10.1109/PDGC50313.2020.9315818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The wide use of mobile phones has become a significant driving force behind a severe increase in malware attacks. These malware applications are hidden in the normal applications which make their classification and detection challenging. The existing techniques are based on signature based approach and are unable to detect unknown malware. In this paper, we propose a technique based on static and dynamic features for the detection of Android malware. We applied a chi-square feature selection algorithm to choose the appropriate features that contribute for detecting malware. After that, we stacked the different base classifiers to improve the detection rate. Furthermore, we compared the proposed method with existing well known machine learning classifiers. The experimental results demonstrate that the proposed technique (K-NN_ RF) achieves better detection accuracy i.e. 98.02%.\",\"PeriodicalId\":347216,\"journal\":{\"name\":\"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDGC50313.2020.9315818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC50313.2020.9315818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

手机的广泛使用已经成为恶意软件攻击严重增加背后的重要推动力。这些恶意软件应用程序隐藏在正常应用程序中,这使得它们的分类和检测具有挑战性。现有的技术是基于签名的方法,无法检测到未知的恶意软件。本文提出了一种基于静态特征和动态特征的Android恶意软件检测技术。我们应用卡方特征选择算法来选择有助于检测恶意软件的适当特征。之后,我们将不同的基分类器进行叠加,以提高检测率。此外,我们将提出的方法与现有的知名机器学习分类器进行了比较。实验结果表明,K-NN_ RF技术的检测准确率达到了98.02%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Android Malware Detection using Chi-Square Feature Selection and Ensemble Learning Method
The wide use of mobile phones has become a significant driving force behind a severe increase in malware attacks. These malware applications are hidden in the normal applications which make their classification and detection challenging. The existing techniques are based on signature based approach and are unable to detect unknown malware. In this paper, we propose a technique based on static and dynamic features for the detection of Android malware. We applied a chi-square feature selection algorithm to choose the appropriate features that contribute for detecting malware. After that, we stacked the different base classifiers to improve the detection rate. Furthermore, we compared the proposed method with existing well known machine learning classifiers. The experimental results demonstrate that the proposed technique (K-NN_ RF) achieves better detection accuracy i.e. 98.02%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信