Filipe Sousa, João A. Dias, Filipe Ribeiro, R. Campos, M. Ricardo
{"title":"绿色无线视频传感器网络的交通感知解决方案","authors":"Filipe Sousa, João A. Dias, Filipe Ribeiro, R. Campos, M. Ricardo","doi":"10.1109/WD.2017.7918111","DOIUrl":null,"url":null,"abstract":"The growth of the IP cameras market, due to their low price and high availability, is making Wireless Video Sensor Networks (WVSNs) attractive. In a mesh, multi-hop video surveillance scenario Wi-Fi is the enabling technology for WVSNs, due to its flexibility and low cost. However, WVSNs still suffer from bad performance, throughput unfairness, and energy inefficiency. Previously, we proposed FM-WiFIX+, a holistic solution to address the problem. FM-WiFIX+ uses FM radio to signal when a video sensor should turn its IEEE 802.11 interface OFF, thus saving energy. Herein, we present a new traffic-aware version of FM-WiFIX+. The results obtained through numerical, simulation, and experimental evaluation demonstrate that the new version can achieve savings in energy consumption up to 84 %, while maintaining the levels of performance and throughput fairness.","PeriodicalId":179998,"journal":{"name":"2017 Wireless Days","volume":"363 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A traffic-aware solution for green Wireless Video Sensor Networks\",\"authors\":\"Filipe Sousa, João A. Dias, Filipe Ribeiro, R. Campos, M. Ricardo\",\"doi\":\"10.1109/WD.2017.7918111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth of the IP cameras market, due to their low price and high availability, is making Wireless Video Sensor Networks (WVSNs) attractive. In a mesh, multi-hop video surveillance scenario Wi-Fi is the enabling technology for WVSNs, due to its flexibility and low cost. However, WVSNs still suffer from bad performance, throughput unfairness, and energy inefficiency. Previously, we proposed FM-WiFIX+, a holistic solution to address the problem. FM-WiFIX+ uses FM radio to signal when a video sensor should turn its IEEE 802.11 interface OFF, thus saving energy. Herein, we present a new traffic-aware version of FM-WiFIX+. The results obtained through numerical, simulation, and experimental evaluation demonstrate that the new version can achieve savings in energy consumption up to 84 %, while maintaining the levels of performance and throughput fairness.\",\"PeriodicalId\":179998,\"journal\":{\"name\":\"2017 Wireless Days\",\"volume\":\"363 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Wireless Days\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WD.2017.7918111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Wireless Days","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WD.2017.7918111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A traffic-aware solution for green Wireless Video Sensor Networks
The growth of the IP cameras market, due to their low price and high availability, is making Wireless Video Sensor Networks (WVSNs) attractive. In a mesh, multi-hop video surveillance scenario Wi-Fi is the enabling technology for WVSNs, due to its flexibility and low cost. However, WVSNs still suffer from bad performance, throughput unfairness, and energy inefficiency. Previously, we proposed FM-WiFIX+, a holistic solution to address the problem. FM-WiFIX+ uses FM radio to signal when a video sensor should turn its IEEE 802.11 interface OFF, thus saving energy. Herein, we present a new traffic-aware version of FM-WiFIX+. The results obtained through numerical, simulation, and experimental evaluation demonstrate that the new version can achieve savings in energy consumption up to 84 %, while maintaining the levels of performance and throughput fairness.