基于深度学习的中文快递订单端到端地址识别解决方案

Jiayi Zhang, Yue Liu
{"title":"基于深度学习的中文快递订单端到端地址识别解决方案","authors":"Jiayi Zhang, Yue Liu","doi":"10.1145/3611450.3611473","DOIUrl":null,"url":null,"abstract":"The courier industry in China has grown quickly due to the rise of online shopping. However, courier notes can unavoidably become smudged or damaged during the delivery process, making it difficult to read the printed Chinese address information or recognize the barcodes. To solve this problem, this paper proposes an end-to-end solution to recognize damaged Chinese addresses: the CRNN model is trained for address recognition for damaged Chinese courier orders using a large Chinese address dataset generated via data augmentation and manual collection. And an address association algorithm is proposed to reduce the recognition errors at the provincial and municipal levels of the addresses. By applying this algorithm, the final accuracy is increased by 2% to 98.7%.","PeriodicalId":289906,"journal":{"name":"Proceedings of the 2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-based End-to-End Address Recognition Solution on Chinese Courier Order Forms\",\"authors\":\"Jiayi Zhang, Yue Liu\",\"doi\":\"10.1145/3611450.3611473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The courier industry in China has grown quickly due to the rise of online shopping. However, courier notes can unavoidably become smudged or damaged during the delivery process, making it difficult to read the printed Chinese address information or recognize the barcodes. To solve this problem, this paper proposes an end-to-end solution to recognize damaged Chinese addresses: the CRNN model is trained for address recognition for damaged Chinese courier orders using a large Chinese address dataset generated via data augmentation and manual collection. And an address association algorithm is proposed to reduce the recognition errors at the provincial and municipal levels of the addresses. By applying this algorithm, the final accuracy is increased by 2% to 98.7%.\",\"PeriodicalId\":289906,\"journal\":{\"name\":\"Proceedings of the 2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3611450.3611473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3611450.3611473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于网上购物的兴起,中国的快递业发展迅速。然而,快递单在递送过程中不可避免地会被弄脏或损坏,使打印的中文地址信息难以阅读或识别条形码。为了解决这一问题,本文提出了一种端到端识别损坏中文地址的解决方案:使用通过数据增强和人工收集生成的大型中文地址数据集训练CRNN模型来识别损坏的中文快递订单的地址。并提出了一种地址关联算法,以减少省、市级地址的识别误差。应用该算法,最终准确率提高了2%,达到98.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-based End-to-End Address Recognition Solution on Chinese Courier Order Forms
The courier industry in China has grown quickly due to the rise of online shopping. However, courier notes can unavoidably become smudged or damaged during the delivery process, making it difficult to read the printed Chinese address information or recognize the barcodes. To solve this problem, this paper proposes an end-to-end solution to recognize damaged Chinese addresses: the CRNN model is trained for address recognition for damaged Chinese courier orders using a large Chinese address dataset generated via data augmentation and manual collection. And an address association algorithm is proposed to reduce the recognition errors at the provincial and municipal levels of the addresses. By applying this algorithm, the final accuracy is increased by 2% to 98.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信