Joseph Y. Halpern, R. V. D. Meyden, Riccardo Pucella
{"title":"认证逻辑的认识论基础(扩展摘要)","authors":"Joseph Y. Halpern, R. V. D. Meyden, Riccardo Pucella","doi":"10.4204/EPTCS.251.21","DOIUrl":null,"url":null,"abstract":"While there have been many attempts, going back to BAN logic, to base reasoning about security protocols on epistemic notions, they have not been all that successful. Arguably, this has been due to the particular logics chosen. We present a simple logic based on the well-understood modal operators of knowledge, time, and probability, and show that it is able to handle issues that have often been swept under the rug by other approaches, while being flexible enough to capture all the higher- level security notions that appear in BAN logic. Moreover, while still assuming that the knowledge operator allows for unbounded computation, it can handle the fact that a computationally bounded agent cannot decrypt messages in a natural way, by distinguishing strings and message terms. We demonstrate that our logic can capture BAN logic notions by providing a translation of the BAN operators into our logic, capturing belief by a form of probabilistic knowledge.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Epistemic Foundation for Authentication Logics (Extended Abstract)\",\"authors\":\"Joseph Y. Halpern, R. V. D. Meyden, Riccardo Pucella\",\"doi\":\"10.4204/EPTCS.251.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While there have been many attempts, going back to BAN logic, to base reasoning about security protocols on epistemic notions, they have not been all that successful. Arguably, this has been due to the particular logics chosen. We present a simple logic based on the well-understood modal operators of knowledge, time, and probability, and show that it is able to handle issues that have often been swept under the rug by other approaches, while being flexible enough to capture all the higher- level security notions that appear in BAN logic. Moreover, while still assuming that the knowledge operator allows for unbounded computation, it can handle the fact that a computationally bounded agent cannot decrypt messages in a natural way, by distinguishing strings and message terms. We demonstrate that our logic can capture BAN logic notions by providing a translation of the BAN operators into our logic, capturing belief by a form of probabilistic knowledge.\",\"PeriodicalId\":118894,\"journal\":{\"name\":\"Theoretical Aspects of Rationality and Knowledge\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Aspects of Rationality and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.251.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Aspects of Rationality and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.251.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Epistemic Foundation for Authentication Logics (Extended Abstract)
While there have been many attempts, going back to BAN logic, to base reasoning about security protocols on epistemic notions, they have not been all that successful. Arguably, this has been due to the particular logics chosen. We present a simple logic based on the well-understood modal operators of knowledge, time, and probability, and show that it is able to handle issues that have often been swept under the rug by other approaches, while being flexible enough to capture all the higher- level security notions that appear in BAN logic. Moreover, while still assuming that the knowledge operator allows for unbounded computation, it can handle the fact that a computationally bounded agent cannot decrypt messages in a natural way, by distinguishing strings and message terms. We demonstrate that our logic can capture BAN logic notions by providing a translation of the BAN operators into our logic, capturing belief by a form of probabilistic knowledge.