代数曲线和热带曲线的对称幂:一个非阿基米德的观点

M. Brandt, Martin Ulirsch
{"title":"代数曲线和热带曲线的对称幂:一个非阿基米德的观点","authors":"M. Brandt, Martin Ulirsch","doi":"10.1090/btran/113","DOIUrl":null,"url":null,"abstract":"We show that the non-Archimedean skeleton of the \n\n \n d\n d\n \n\n-th symmetric power of a smooth projective algebraic curve \n\n \n X\n X\n \n\n is naturally isomorphic to the \n\n \n d\n d\n \n\n-th symmetric power of the tropical curve that arises as the non-Archimedean skeleton of \n\n \n X\n X\n \n\n. The retraction to the skeleton is precisely the specialization map for divisors. Moreover, we show that the process of tropicalization naturally commutes with the diagonal morphisms and the Abel-Jacobi map and we exhibit a faithful tropicalization for symmetric powers of curves. Finally, we prove a version of the Bieri-Groves Theorem that allows us, under certain tropical genericity assumptions, to deduce a new tropical Riemann-Roch-Theorem for the tropicalization of linear systems.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Symmetric powers of algebraic and tropical curves: A non-Archimedean perspective\",\"authors\":\"M. Brandt, Martin Ulirsch\",\"doi\":\"10.1090/btran/113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the non-Archimedean skeleton of the \\n\\n \\n d\\n d\\n \\n\\n-th symmetric power of a smooth projective algebraic curve \\n\\n \\n X\\n X\\n \\n\\n is naturally isomorphic to the \\n\\n \\n d\\n d\\n \\n\\n-th symmetric power of the tropical curve that arises as the non-Archimedean skeleton of \\n\\n \\n X\\n X\\n \\n\\n. The retraction to the skeleton is precisely the specialization map for divisors. Moreover, we show that the process of tropicalization naturally commutes with the diagonal morphisms and the Abel-Jacobi map and we exhibit a faithful tropicalization for symmetric powers of curves. Finally, we prove a version of the Bieri-Groves Theorem that allows us, under certain tropical genericity assumptions, to deduce a new tropical Riemann-Roch-Theorem for the tropicalization of linear systems.\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们证明了光滑投影代数曲线X X的d d -对称幂的非阿基米德骨架与X X的d d -对称幂的热带曲线的d d -对称幂自然同构。对骨架的回缩正是除数的专门化映射。此外,我们还证明了热带化过程与对角态射和Abel-Jacobi映射的自然交换,并展示了对称幂曲线的忠实热带化。最后,我们证明了Bieri-Groves定理的一个版本,它允许我们在一定的热带一般性假设下,为线性系统的热带化推导出一个新的热带riemann - roch定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric powers of algebraic and tropical curves: A non-Archimedean perspective
We show that the non-Archimedean skeleton of the d d -th symmetric power of a smooth projective algebraic curve X X is naturally isomorphic to the d d -th symmetric power of the tropical curve that arises as the non-Archimedean skeleton of X X . The retraction to the skeleton is precisely the specialization map for divisors. Moreover, we show that the process of tropicalization naturally commutes with the diagonal morphisms and the Abel-Jacobi map and we exhibit a faithful tropicalization for symmetric powers of curves. Finally, we prove a version of the Bieri-Groves Theorem that allows us, under certain tropical genericity assumptions, to deduce a new tropical Riemann-Roch-Theorem for the tropicalization of linear systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信