使用上下文约束基于模型的推理

L. Gong, D. Riecken
{"title":"使用上下文约束基于模型的推理","authors":"L. Gong, D. Riecken","doi":"10.1109/WI.2003.1241253","DOIUrl":null,"url":null,"abstract":"Web-based customer service has become a norm of business practice with increasing emphasis on modeling customer needs and providing them with targeted or personalized service solutions in a timely fashion. Almost all the commercial Web service systems adopt some kind of simple customer segmentation models and shallow pattern matching or rule-based techniques for high performance. The models built based on these techniques though very efficient have a fundamental limitation in their ability to capture and explain the reasoning in the process of determining and selecting appropriate services or products. However, using deep models (e.g. semantic networks), though desirable for their expressive power, may require significantly more computational resources (e.g. time) for reasoning. This can compromise the system performance. We report on a new approach that represents and uses contextual information in semantic net-based models to constrain and prune potentially very large search space, which results in much improved performance in terms of speed and selectivity as evidenced by the evaluation results.","PeriodicalId":403574,"journal":{"name":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","volume":"30 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Constraining model-based reasoning using contexts\",\"authors\":\"L. Gong, D. Riecken\",\"doi\":\"10.1109/WI.2003.1241253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web-based customer service has become a norm of business practice with increasing emphasis on modeling customer needs and providing them with targeted or personalized service solutions in a timely fashion. Almost all the commercial Web service systems adopt some kind of simple customer segmentation models and shallow pattern matching or rule-based techniques for high performance. The models built based on these techniques though very efficient have a fundamental limitation in their ability to capture and explain the reasoning in the process of determining and selecting appropriate services or products. However, using deep models (e.g. semantic networks), though desirable for their expressive power, may require significantly more computational resources (e.g. time) for reasoning. This can compromise the system performance. We report on a new approach that represents and uses contextual information in semantic net-based models to constrain and prune potentially very large search space, which results in much improved performance in terms of speed and selectivity as evidenced by the evaluation results.\",\"PeriodicalId\":403574,\"journal\":{\"name\":\"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)\",\"volume\":\"30 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2003.1241253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2003.1241253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于web的客户服务已经成为商业实践的一种规范,越来越强调对客户需求进行建模,并及时地为他们提供有针对性的或个性化的服务解决方案。几乎所有的商业Web服务系统都采用某种简单的客户细分模型和浅层模式匹配或基于规则的技术来实现高性能。基于这些技术构建的模型虽然非常有效,但在捕获和解释确定和选择适当服务或产品过程中的推理方面存在根本性的限制。然而,使用深度模型(如语义网络),虽然其表达能力是可取的,但可能需要更多的计算资源(如时间)来进行推理。这可能会损害系统性能。我们报告了一种新的方法,该方法在基于语义网络的模型中表示和使用上下文信息来约束和修剪潜在的非常大的搜索空间,这在速度和选择性方面大大提高了性能,正如评估结果所证明的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constraining model-based reasoning using contexts
Web-based customer service has become a norm of business practice with increasing emphasis on modeling customer needs and providing them with targeted or personalized service solutions in a timely fashion. Almost all the commercial Web service systems adopt some kind of simple customer segmentation models and shallow pattern matching or rule-based techniques for high performance. The models built based on these techniques though very efficient have a fundamental limitation in their ability to capture and explain the reasoning in the process of determining and selecting appropriate services or products. However, using deep models (e.g. semantic networks), though desirable for their expressive power, may require significantly more computational resources (e.g. time) for reasoning. This can compromise the system performance. We report on a new approach that represents and uses contextual information in semantic net-based models to constrain and prune potentially very large search space, which results in much improved performance in terms of speed and selectivity as evidenced by the evaluation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信