许多大轨道的存在

R. Schwartz
{"title":"许多大轨道的存在","authors":"R. Schwartz","doi":"10.2307/j.ctv5rf6tz.26","DOIUrl":null,"url":null,"abstract":"A plaid polygon is called N-fat if it is not contained in any strip of width N. As a related notion, a plaid polygon is called N-long if it has diameter at least N. This chapter will prove Theorem 0.8. Section 22.2 studies equidistribution properties of the plaid PET map Φ‎A, as a function of A. Section 22.3 uses these equidistribution properties to show that the N-fat polygons essentially appear everywhere in the planar plaid model. The result is called the Ubiquity Lemma. Section 22.4 examines how the plaid model interacts with the grid of all lines of capacity at most K. Section 22.5 uses the Rectangle Lemma on many scales to show the existence of many distinct N-fat polygons. Section 2.6 discusses some properties of continued fractions and circle rotations. Finally, Section 22.7 proves the Grid Supply Lemma.","PeriodicalId":205299,"journal":{"name":"The Plaid Model","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Many Large Orbits\",\"authors\":\"R. Schwartz\",\"doi\":\"10.2307/j.ctv5rf6tz.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A plaid polygon is called N-fat if it is not contained in any strip of width N. As a related notion, a plaid polygon is called N-long if it has diameter at least N. This chapter will prove Theorem 0.8. Section 22.2 studies equidistribution properties of the plaid PET map Φ‎A, as a function of A. Section 22.3 uses these equidistribution properties to show that the N-fat polygons essentially appear everywhere in the planar plaid model. The result is called the Ubiquity Lemma. Section 22.4 examines how the plaid model interacts with the grid of all lines of capacity at most K. Section 22.5 uses the Rectangle Lemma on many scales to show the existence of many distinct N-fat polygons. Section 2.6 discusses some properties of continued fractions and circle rotations. Finally, Section 22.7 proves the Grid Supply Lemma.\",\"PeriodicalId\":205299,\"journal\":{\"name\":\"The Plaid Model\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plaid Model\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctv5rf6tz.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plaid Model","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv5rf6tz.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果格子多边形不包含在任何宽度为n的条形中,则称其为N-fat。作为一个相关的概念,如果一个格子多边形的直径至少为n,则称其为N-long。本章将证明定理0.8。Section 22.2研究格纹PET图Φ™A的等分布特性,作为A的函数。Section 22.3利用这些等分布特性表明N-fat多边形在平面格纹模型中基本上无处不在。这个结果被称为普遍性引理。第22.4节研究格纹模型如何与最大k的所有容量线的网格相互作用。第22.5节在许多尺度上使用矩形引理来显示许多不同n -脂肪多边形的存在。第2.6节讨论连分式和圆旋转的一些性质。最后,第22.7节证明了网格供应引理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of Many Large Orbits
A plaid polygon is called N-fat if it is not contained in any strip of width N. As a related notion, a plaid polygon is called N-long if it has diameter at least N. This chapter will prove Theorem 0.8. Section 22.2 studies equidistribution properties of the plaid PET map Φ‎A, as a function of A. Section 22.3 uses these equidistribution properties to show that the N-fat polygons essentially appear everywhere in the planar plaid model. The result is called the Ubiquity Lemma. Section 22.4 examines how the plaid model interacts with the grid of all lines of capacity at most K. Section 22.5 uses the Rectangle Lemma on many scales to show the existence of many distinct N-fat polygons. Section 2.6 discusses some properties of continued fractions and circle rotations. Finally, Section 22.7 proves the Grid Supply Lemma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信