基于图神经网络树形法的行人轨迹预测

Bogdan Ilie Sighencea
{"title":"基于图神经网络树形法的行人轨迹预测","authors":"Bogdan Ilie Sighencea","doi":"10.1109/SYNASC57785.2022.00046","DOIUrl":null,"url":null,"abstract":"Pedestrian trajectory prediction in real-world scenarios is a challenging task for several computer vision applications, such as autonomous driving, video surveillance, and robotic systems. This is not a trivial task due to the numerous potential trajectories. In this article, it provides a tree-based approach to handle this multimodal prediction challenge. The tree is designed based on the observed data and is also used to predict future trajectories. In particular, an individual's potential future trajectory is represented by the tree's root-to-leaf route. Compared to previous approaches that use implicit latent variables to describe possible future paths, the movement behaviors may be directly represented by the path in the tree (e.g., go straight and then turn left), and thus offer more socially suitable trajectories. The experimental results on the ETH, UCY, and Stanford Drone datasets show that this approach can exceed the performance of the state-of-the-art approaches. The solution is more efficient and compact, with a smaller model size and a higher accuracy, and delivers better results with reference to average displacement error (ADE) and final displacement error (FDE) metrics.","PeriodicalId":446065,"journal":{"name":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"136 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pedestrian Trajectory Prediction Based on Tree Method using Graph Neural Networks\",\"authors\":\"Bogdan Ilie Sighencea\",\"doi\":\"10.1109/SYNASC57785.2022.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian trajectory prediction in real-world scenarios is a challenging task for several computer vision applications, such as autonomous driving, video surveillance, and robotic systems. This is not a trivial task due to the numerous potential trajectories. In this article, it provides a tree-based approach to handle this multimodal prediction challenge. The tree is designed based on the observed data and is also used to predict future trajectories. In particular, an individual's potential future trajectory is represented by the tree's root-to-leaf route. Compared to previous approaches that use implicit latent variables to describe possible future paths, the movement behaviors may be directly represented by the path in the tree (e.g., go straight and then turn left), and thus offer more socially suitable trajectories. The experimental results on the ETH, UCY, and Stanford Drone datasets show that this approach can exceed the performance of the state-of-the-art approaches. The solution is more efficient and compact, with a smaller model size and a higher accuracy, and delivers better results with reference to average displacement error (ADE) and final displacement error (FDE) metrics.\",\"PeriodicalId\":446065,\"journal\":{\"name\":\"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"136 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC57785.2022.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC57785.2022.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于自动驾驶、视频监控和机器人系统等计算机视觉应用来说,真实场景中的行人轨迹预测是一项具有挑战性的任务。这不是一项微不足道的任务,因为有许多潜在的轨迹。在本文中,它提供了一种基于树的方法来处理这种多模态预测挑战。该树是根据观测数据设计的,也可用于预测未来的轨迹。特别是,一个人的潜在未来轨迹是由树的根到叶的路径表示的。与之前使用隐式潜在变量来描述可能的未来路径的方法相比,运动行为可以直接由树中的路径表示(例如,直走然后向左拐),从而提供更适合社会的轨迹。在ETH、UCY和斯坦福无人机数据集上的实验结果表明,这种方法的性能可以超过最先进的方法。该解决方案更高效、更紧凑,具有更小的模型尺寸和更高的精度,并且在参考平均位移误差(ADE)和最终位移误差(FDE)指标时提供更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pedestrian Trajectory Prediction Based on Tree Method using Graph Neural Networks
Pedestrian trajectory prediction in real-world scenarios is a challenging task for several computer vision applications, such as autonomous driving, video surveillance, and robotic systems. This is not a trivial task due to the numerous potential trajectories. In this article, it provides a tree-based approach to handle this multimodal prediction challenge. The tree is designed based on the observed data and is also used to predict future trajectories. In particular, an individual's potential future trajectory is represented by the tree's root-to-leaf route. Compared to previous approaches that use implicit latent variables to describe possible future paths, the movement behaviors may be directly represented by the path in the tree (e.g., go straight and then turn left), and thus offer more socially suitable trajectories. The experimental results on the ETH, UCY, and Stanford Drone datasets show that this approach can exceed the performance of the state-of-the-art approaches. The solution is more efficient and compact, with a smaller model size and a higher accuracy, and delivers better results with reference to average displacement error (ADE) and final displacement error (FDE) metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信