声纳图像局部补丁自适应去噪

Rithu James, M. Supriya
{"title":"声纳图像局部补丁自适应去噪","authors":"Rithu James, M. Supriya","doi":"10.1109/SYMPOL.2015.7581165","DOIUrl":null,"url":null,"abstract":"Sonar images are highly affected by signal-dependent multiplicative speckle noise. Denoising is required in sonar images to distinguish a number of different regions by analyzing the image. In this paper, we propose sonar image denoising based on a signal independent additive Gaussian noise model. The sparse representation of the sonar images is exploited in the denoising method. The noisy image, image patches and blocks of patches are denoised using Principal Component Analysis and Singular Value Decomposition methods. Comparison of different methods is done using different non reference image performance evaluation criteria.","PeriodicalId":127848,"journal":{"name":"2015 International Symposium on Ocean Electronics (SYMPOL)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sonar image denoising using adaptive processing of local patches\",\"authors\":\"Rithu James, M. Supriya\",\"doi\":\"10.1109/SYMPOL.2015.7581165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sonar images are highly affected by signal-dependent multiplicative speckle noise. Denoising is required in sonar images to distinguish a number of different regions by analyzing the image. In this paper, we propose sonar image denoising based on a signal independent additive Gaussian noise model. The sparse representation of the sonar images is exploited in the denoising method. The noisy image, image patches and blocks of patches are denoised using Principal Component Analysis and Singular Value Decomposition methods. Comparison of different methods is done using different non reference image performance evaluation criteria.\",\"PeriodicalId\":127848,\"journal\":{\"name\":\"2015 International Symposium on Ocean Electronics (SYMPOL)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Ocean Electronics (SYMPOL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYMPOL.2015.7581165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Ocean Electronics (SYMPOL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYMPOL.2015.7581165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

声纳图像受依赖于信号的乘性散斑噪声的影响很大。声纳图像需要去噪,通过对图像的分析来区分多个不同的区域。本文提出了一种基于信号无关加性高斯噪声模型的声纳图像去噪方法。在去噪方法中利用了声呐图像的稀疏表示。利用主成分分析和奇异值分解方法对噪声图像、图像斑块和斑块块进行去噪。采用不同的非参考图像性能评价标准对不同方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sonar image denoising using adaptive processing of local patches
Sonar images are highly affected by signal-dependent multiplicative speckle noise. Denoising is required in sonar images to distinguish a number of different regions by analyzing the image. In this paper, we propose sonar image denoising based on a signal independent additive Gaussian noise model. The sparse representation of the sonar images is exploited in the denoising method. The noisy image, image patches and blocks of patches are denoised using Principal Component Analysis and Singular Value Decomposition methods. Comparison of different methods is done using different non reference image performance evaluation criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信